Metamath Proof Explorer


Theorem fvsb

Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011)

Ref Expression
Assertion fvsb ∃!yAFy[˙FA/x]˙φxyAFyy=xφ

Proof

Step Hyp Ref Expression
1 df-fv FA=ιy|AFy
2 dfsbcq FA=ιy|AFy[˙FA/x]˙φ[˙ιy|AFy/x]˙φ
3 1 2 ax-mp [˙FA/x]˙φ[˙ιy|AFy/x]˙φ
4 iotasbc ∃!yAFy[˙ιy|AFy/x]˙φxyAFyy=xφ
5 3 4 bitrid ∃!yAFy[˙FA/x]˙φxyAFyy=xφ