Metamath Proof Explorer


Theorem fvun1d

Description: The value of a union when the argument is in the first domain, a deduction version. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses fvun1d.1 φ F Fn A
fvun1d.2 φ G Fn B
fvun1d.3 φ A B =
fvun1d.4 φ X A
Assertion fvun1d φ F G X = F X

Proof

Step Hyp Ref Expression
1 fvun1d.1 φ F Fn A
2 fvun1d.2 φ G Fn B
3 fvun1d.3 φ A B =
4 fvun1d.4 φ X A
5 3 4 jca φ A B = X A
6 1 2 5 3jca φ F Fn A G Fn B A B = X A
7 fvun1 F Fn A G Fn B A B = X A F G X = F X
8 6 7 syl φ F G X = F X