Metamath Proof Explorer


Theorem fz0addge0

Description: The sum of two integers in 0-based finite sets of sequential integers is greater than or equal to zero. (Contributed by Alexander van der Vekens, 8-Jun-2018)

Ref Expression
Assertion fz0addge0 A 0 M B 0 N 0 A + B

Proof

Step Hyp Ref Expression
1 elfznn0 A 0 M A 0
2 elfznn0 B 0 N B 0
3 1 2 anim12i A 0 M B 0 N A 0 B 0
4 nn0re A 0 A
5 nn0re B 0 B
6 4 5 anim12i A 0 B 0 A B
7 nn0ge0 A 0 0 A
8 nn0ge0 B 0 0 B
9 7 8 anim12i A 0 B 0 0 A 0 B
10 6 9 jca A 0 B 0 A B 0 A 0 B
11 addge0 A B 0 A 0 B 0 A + B
12 3 10 11 3syl A 0 M B 0 N 0 A + B