Metamath Proof Explorer


Theorem elfzlble

Description: Membership of an integer in a finite set of sequential integers with the integer as upper bound and a lower bound less than or equal to the integer. (Contributed by AV, 21-Oct-2018)

Ref Expression
Assertion elfzlble N M 0 N N M N

Proof

Step Hyp Ref Expression
1 nn0z M 0 M
2 zsubcl N M N M
3 1 2 sylan2 N M 0 N M
4 simpl N M 0 N
5 nn0ge0 M 0 0 M
6 5 adantl N M 0 0 M
7 zre N N
8 nn0re M 0 M
9 subge02 N M 0 M N M N
10 7 8 9 syl2an N M 0 0 M N M N
11 6 10 mpbid N M 0 N M N
12 eluz2 N N M N M N N M N
13 3 4 11 12 syl3anbrc N M 0 N N M
14 eluzfz2 N N M N N M N
15 13 14 syl N M 0 N N M N