Metamath Proof Explorer


Theorem elfzlble

Description: Membership of an integer in a finite set of sequential integers with the integer as upper bound and a lower bound less than or equal to the integer. (Contributed by AV, 21-Oct-2018)

Ref Expression
Assertion elfzlble ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → 𝑁 ∈ ( ( 𝑁𝑀 ) ... 𝑁 ) )

Proof

Step Hyp Ref Expression
1 nn0z ( 𝑀 ∈ ℕ0𝑀 ∈ ℤ )
2 zsubcl ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁𝑀 ) ∈ ℤ )
3 1 2 sylan2 ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁𝑀 ) ∈ ℤ )
4 simpl ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → 𝑁 ∈ ℤ )
5 nn0ge0 ( 𝑀 ∈ ℕ0 → 0 ≤ 𝑀 )
6 5 adantl ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → 0 ≤ 𝑀 )
7 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
8 nn0re ( 𝑀 ∈ ℕ0𝑀 ∈ ℝ )
9 subge02 ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 0 ≤ 𝑀 ↔ ( 𝑁𝑀 ) ≤ 𝑁 ) )
10 7 8 9 syl2an ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 0 ≤ 𝑀 ↔ ( 𝑁𝑀 ) ≤ 𝑁 ) )
11 6 10 mpbid ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁𝑀 ) ≤ 𝑁 )
12 eluz2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑁𝑀 ) ) ↔ ( ( 𝑁𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁𝑀 ) ≤ 𝑁 ) )
13 3 4 11 12 syl3anbrc ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → 𝑁 ∈ ( ℤ ‘ ( 𝑁𝑀 ) ) )
14 eluzfz2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑁𝑀 ) ) → 𝑁 ∈ ( ( 𝑁𝑀 ) ... 𝑁 ) )
15 13 14 syl ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → 𝑁 ∈ ( ( 𝑁𝑀 ) ... 𝑁 ) )