Metamath Proof Explorer


Theorem elfzlble

Description: Membership of an integer in a finite set of sequential integers with the integer as upper bound and a lower bound less than or equal to the integer. (Contributed by AV, 21-Oct-2018)

Ref Expression
Assertion elfzlble
|- ( ( N e. ZZ /\ M e. NN0 ) -> N e. ( ( N - M ) ... N ) )

Proof

Step Hyp Ref Expression
1 nn0z
 |-  ( M e. NN0 -> M e. ZZ )
2 zsubcl
 |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( N - M ) e. ZZ )
3 1 2 sylan2
 |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( N - M ) e. ZZ )
4 simpl
 |-  ( ( N e. ZZ /\ M e. NN0 ) -> N e. ZZ )
5 nn0ge0
 |-  ( M e. NN0 -> 0 <_ M )
6 5 adantl
 |-  ( ( N e. ZZ /\ M e. NN0 ) -> 0 <_ M )
7 zre
 |-  ( N e. ZZ -> N e. RR )
8 nn0re
 |-  ( M e. NN0 -> M e. RR )
9 subge02
 |-  ( ( N e. RR /\ M e. RR ) -> ( 0 <_ M <-> ( N - M ) <_ N ) )
10 7 8 9 syl2an
 |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( 0 <_ M <-> ( N - M ) <_ N ) )
11 6 10 mpbid
 |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( N - M ) <_ N )
12 eluz2
 |-  ( N e. ( ZZ>= ` ( N - M ) ) <-> ( ( N - M ) e. ZZ /\ N e. ZZ /\ ( N - M ) <_ N ) )
13 3 4 11 12 syl3anbrc
 |-  ( ( N e. ZZ /\ M e. NN0 ) -> N e. ( ZZ>= ` ( N - M ) ) )
14 eluzfz2
 |-  ( N e. ( ZZ>= ` ( N - M ) ) -> N e. ( ( N - M ) ... N ) )
15 13 14 syl
 |-  ( ( N e. ZZ /\ M e. NN0 ) -> N e. ( ( N - M ) ... N ) )