Metamath Proof Explorer


Theorem elfzelfzlble

Description: Membership of an element of a finite set of sequential integers in a finite set of sequential integers with the same upper bound and a lower bound less than the upper bound. (Contributed by AV, 21-Oct-2018)

Ref Expression
Assertion elfzelfzlble M K 0 N N < M + K K N M N

Proof

Step Hyp Ref Expression
1 elfz2 K 0 N 0 N K 0 K K N
2 3simpc 0 N K N K
3 2 adantr 0 N K 0 K K N N K
4 1 3 sylbi K 0 N N K
5 4 anim2i M K 0 N M N K
6 simpl N K N
7 6 anim2i M N K M N
8 7 ancomd M N K N M
9 zsubcl N M N M
10 8 9 syl M N K N M
11 6 adantl M N K N
12 simprr M N K K
13 10 11 12 3jca M N K N M N K
14 5 13 syl M K 0 N N M N K
15 14 3adant3 M K 0 N N < M + K N M N K
16 elfzel2 K 0 N N
17 16 zred K 0 N N
18 17 adantl M K 0 N N
19 zre M M
20 19 adantr M K 0 N M
21 elfzelz K 0 N K
22 21 zred K 0 N K
23 22 adantl M K 0 N K
24 18 20 23 3jca M K 0 N N M K
25 simp1 N M K N
26 readdcl M K M + K
27 26 3adant1 N M K M + K
28 ltle N M + K N < M + K N M + K
29 25 27 28 syl2anc N M K N < M + K N M + K
30 lesubadd2 N M K N M K N M + K
31 29 30 sylibrd N M K N < M + K N M K
32 24 31 syl M K 0 N N < M + K N M K
33 32 3impia M K 0 N N < M + K N M K
34 elfzle2 K 0 N K N
35 34 3ad2ant2 M K 0 N N < M + K K N
36 15 33 35 jca32 M K 0 N N < M + K N M N K N M K K N
37 elfz2 K N M N N M N K N M K K N
38 36 37 sylibr M K 0 N N < M + K K N M N