| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfznn0 | ⊢ ( 𝐴  ∈  ( 0 ... 𝑀 )  →  𝐴  ∈  ℕ0 ) | 
						
							| 2 |  | elfznn0 | ⊢ ( 𝐵  ∈  ( 0 ... 𝑁 )  →  𝐵  ∈  ℕ0 ) | 
						
							| 3 | 1 2 | anim12i | ⊢ ( ( 𝐴  ∈  ( 0 ... 𝑀 )  ∧  𝐵  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) ) | 
						
							| 4 |  | nn0re | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | nn0re | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℝ ) | 
						
							| 6 | 4 5 | anim12i | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ ) ) | 
						
							| 7 |  | nn0ge0 | ⊢ ( 𝐴  ∈  ℕ0  →  0  ≤  𝐴 ) | 
						
							| 8 |  | nn0ge0 | ⊢ ( 𝐵  ∈  ℕ0  →  0  ≤  𝐵 ) | 
						
							| 9 | 7 8 | anim12i | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 0  ≤  𝐴  ∧  0  ≤  𝐵 ) ) | 
						
							| 10 | 6 9 | jca | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  0  ≤  𝐵 ) ) ) | 
						
							| 11 |  | addge0 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  0  ≤  𝐵 ) )  →  0  ≤  ( 𝐴  +  𝐵 ) ) | 
						
							| 12 | 3 10 11 | 3syl | ⊢ ( ( 𝐴  ∈  ( 0 ... 𝑀 )  ∧  𝐵  ∈  ( 0 ... 𝑁 ) )  →  0  ≤  ( 𝐴  +  𝐵 ) ) |