Step |
Hyp |
Ref |
Expression |
1 |
|
elfznn0 |
⊢ ( 𝐴 ∈ ( 0 ... 𝑀 ) → 𝐴 ∈ ℕ0 ) |
2 |
|
elfznn0 |
⊢ ( 𝐵 ∈ ( 0 ... 𝑁 ) → 𝐵 ∈ ℕ0 ) |
3 |
1 2
|
anim12i |
⊢ ( ( 𝐴 ∈ ( 0 ... 𝑀 ) ∧ 𝐵 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) |
4 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
5 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
6 |
4 5
|
anim12i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
7 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
8 |
|
nn0ge0 |
⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ 𝐵 ) |
9 |
7 8
|
anim12i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
10 |
6 9
|
jca |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
11 |
|
addge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 + 𝐵 ) ) |
12 |
3 10 11
|
3syl |
⊢ ( ( 𝐴 ∈ ( 0 ... 𝑀 ) ∧ 𝐵 ∈ ( 0 ... 𝑁 ) ) → 0 ≤ ( 𝐴 + 𝐵 ) ) |