Metamath Proof Explorer


Theorem fz0addge0

Description: The sum of two integers in 0-based finite sets of sequential integers is greater than or equal to zero. (Contributed by Alexander van der Vekens, 8-Jun-2018)

Ref Expression
Assertion fz0addge0 ( ( 𝐴 ∈ ( 0 ... 𝑀 ) ∧ 𝐵 ∈ ( 0 ... 𝑁 ) ) → 0 ≤ ( 𝐴 + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elfznn0 ( 𝐴 ∈ ( 0 ... 𝑀 ) → 𝐴 ∈ ℕ0 )
2 elfznn0 ( 𝐵 ∈ ( 0 ... 𝑁 ) → 𝐵 ∈ ℕ0 )
3 1 2 anim12i ( ( 𝐴 ∈ ( 0 ... 𝑀 ) ∧ 𝐵 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) )
4 nn0re ( 𝐴 ∈ ℕ0𝐴 ∈ ℝ )
5 nn0re ( 𝐵 ∈ ℕ0𝐵 ∈ ℝ )
6 4 5 anim12i ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) )
7 nn0ge0 ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 )
8 nn0ge0 ( 𝐵 ∈ ℕ0 → 0 ≤ 𝐵 )
9 7 8 anim12i ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) )
10 6 9 jca ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) )
11 addge0 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 + 𝐵 ) )
12 3 10 11 3syl ( ( 𝐴 ∈ ( 0 ... 𝑀 ) ∧ 𝐵 ∈ ( 0 ... 𝑁 ) ) → 0 ≤ ( 𝐴 + 𝐵 ) )