| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfznn0 |
|- ( A e. ( 0 ... M ) -> A e. NN0 ) |
| 2 |
|
elfznn0 |
|- ( B e. ( 0 ... N ) -> B e. NN0 ) |
| 3 |
1 2
|
anim12i |
|- ( ( A e. ( 0 ... M ) /\ B e. ( 0 ... N ) ) -> ( A e. NN0 /\ B e. NN0 ) ) |
| 4 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
| 5 |
|
nn0re |
|- ( B e. NN0 -> B e. RR ) |
| 6 |
4 5
|
anim12i |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A e. RR /\ B e. RR ) ) |
| 7 |
|
nn0ge0 |
|- ( A e. NN0 -> 0 <_ A ) |
| 8 |
|
nn0ge0 |
|- ( B e. NN0 -> 0 <_ B ) |
| 9 |
7 8
|
anim12i |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( 0 <_ A /\ 0 <_ B ) ) |
| 10 |
6 9
|
jca |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) ) |
| 11 |
|
addge0 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A + B ) ) |
| 12 |
3 10 11
|
3syl |
|- ( ( A e. ( 0 ... M ) /\ B e. ( 0 ... N ) ) -> 0 <_ ( A + B ) ) |