| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfznn0 |  |-  ( A e. ( 0 ... M ) -> A e. NN0 ) | 
						
							| 2 |  | elfznn0 |  |-  ( B e. ( 0 ... N ) -> B e. NN0 ) | 
						
							| 3 | 1 2 | anim12i |  |-  ( ( A e. ( 0 ... M ) /\ B e. ( 0 ... N ) ) -> ( A e. NN0 /\ B e. NN0 ) ) | 
						
							| 4 |  | nn0re |  |-  ( A e. NN0 -> A e. RR ) | 
						
							| 5 |  | nn0re |  |-  ( B e. NN0 -> B e. RR ) | 
						
							| 6 | 4 5 | anim12i |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A e. RR /\ B e. RR ) ) | 
						
							| 7 |  | nn0ge0 |  |-  ( A e. NN0 -> 0 <_ A ) | 
						
							| 8 |  | nn0ge0 |  |-  ( B e. NN0 -> 0 <_ B ) | 
						
							| 9 | 7 8 | anim12i |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( 0 <_ A /\ 0 <_ B ) ) | 
						
							| 10 | 6 9 | jca |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) ) | 
						
							| 11 |  | addge0 |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A + B ) ) | 
						
							| 12 | 3 10 11 | 3syl |  |-  ( ( A e. ( 0 ... M ) /\ B e. ( 0 ... N ) ) -> 0 <_ ( A + B ) ) |