Metamath Proof Explorer


Theorem fz0addge0

Description: The sum of two integers in 0-based finite sets of sequential integers is greater than or equal to zero. (Contributed by Alexander van der Vekens, 8-Jun-2018)

Ref Expression
Assertion fz0addge0
|- ( ( A e. ( 0 ... M ) /\ B e. ( 0 ... N ) ) -> 0 <_ ( A + B ) )

Proof

Step Hyp Ref Expression
1 elfznn0
 |-  ( A e. ( 0 ... M ) -> A e. NN0 )
2 elfznn0
 |-  ( B e. ( 0 ... N ) -> B e. NN0 )
3 1 2 anim12i
 |-  ( ( A e. ( 0 ... M ) /\ B e. ( 0 ... N ) ) -> ( A e. NN0 /\ B e. NN0 ) )
4 nn0re
 |-  ( A e. NN0 -> A e. RR )
5 nn0re
 |-  ( B e. NN0 -> B e. RR )
6 4 5 anim12i
 |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A e. RR /\ B e. RR ) )
7 nn0ge0
 |-  ( A e. NN0 -> 0 <_ A )
8 nn0ge0
 |-  ( B e. NN0 -> 0 <_ B )
9 7 8 anim12i
 |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( 0 <_ A /\ 0 <_ B ) )
10 6 9 jca
 |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) )
11 addge0
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A + B ) )
12 3 10 11 3syl
 |-  ( ( A e. ( 0 ... M ) /\ B e. ( 0 ... N ) ) -> 0 <_ ( A + B ) )