Metamath Proof Explorer


Theorem fzisfzounsn

Description: A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018)

Ref Expression
Assertion fzisfzounsn BAAB=A..^BB

Proof

Step Hyp Ref Expression
1 eluzelz BAB
2 fzval3 BAB=A..^B+1
3 1 2 syl BAAB=A..^B+1
4 fzosplitsn BAA..^B+1=A..^BB
5 3 4 eqtrd BAAB=A..^BB