Metamath Proof Explorer


Theorem fzof

Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015)

Ref Expression
Assertion fzof ..^:×𝒫

Proof

Step Hyp Ref Expression
1 fzssz mn1
2 ovex mn1V
3 2 elpw mn1𝒫mn1
4 1 3 mpbir mn1𝒫
5 4 rgen2w mnmn1𝒫
6 df-fzo ..^=m,nmn1
7 6 fmpo mnmn1𝒫..^:×𝒫
8 5 7 mpbi ..^:×𝒫