Metamath Proof Explorer


Theorem fzpr

Description: A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion fzpr MMM+1=MM+1

Proof

Step Hyp Ref Expression
1 uzid MMM
2 elfzp1 MMmMM+1mMMm=M+1
3 1 2 syl MmMM+1mMMm=M+1
4 fzsn MMM=M
5 4 eleq2d MmMMmM
6 velsn mMm=M
7 5 6 bitrdi MmMMm=M
8 7 orbi1d MmMMm=M+1m=Mm=M+1
9 3 8 bitrd MmMM+1m=Mm=M+1
10 vex mV
11 10 elpr mMM+1m=Mm=M+1
12 9 11 bitr4di MmMM+1mMM+1
13 12 eqrdv MMM+1=MM+1