Metamath Proof Explorer


Theorem fzsplit

Description: Split a finite interval of integers into two parts. (Contributed by Jeff Madsen, 17-Jun-2010) (Revised by Mario Carneiro, 13-Apr-2016)

Ref Expression
Assertion fzsplit KMNMN=MKK+1N

Proof

Step Hyp Ref Expression
1 elfzuz KMNKM
2 peano2uz KMK+1M
3 1 2 syl KMNK+1M
4 elfzuz3 KMNNK
5 fzsplit2 K+1MNKMN=MKK+1N
6 3 4 5 syl2anc KMNMN=MKK+1N