Metamath Proof Explorer


Theorem ga0

Description: The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Assertion ga0 GGrpGGrpAct

Proof

Step Hyp Ref Expression
1 0ex V
2 1 jctr GGrpGGrpV
3 f0 :
4 xp0 BaseG×=
5 4 feq2i :BaseG×:
6 3 5 mpbir :BaseG×
7 ral0 x0Gx=xyBaseGzBaseGy+Gzx=yzx
8 6 7 pm3.2i :BaseG×x0Gx=xyBaseGzBaseGy+Gzx=yzx
9 eqid BaseG=BaseG
10 eqid +G=+G
11 eqid 0G=0G
12 9 10 11 isga GGrpActGGrpV:BaseG×x0Gx=xyBaseGzBaseGy+Gzx=yzx
13 2 8 12 sylanblrc GGrpGGrpAct