Metamath Proof Explorer


Theorem gbowodd

Description: A weak odd Goldbach number is odd. (Contributed by AV, 25-Jul-2020)

Ref Expression
Assertion gbowodd ZGoldbachOddWZOdd

Proof

Step Hyp Ref Expression
1 isgbow ZGoldbachOddWZOddpqrZ=p+q+r
2 1 simplbi ZGoldbachOddWZOdd