Metamath Proof Explorer


Theorem gbowodd

Description: A weak odd Goldbach number is odd. (Contributed by AV, 25-Jul-2020)

Ref Expression
Assertion gbowodd ( 𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd )

Proof

Step Hyp Ref Expression
1 isgbow ( 𝑍 ∈ GoldbachOddW ↔ ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) )
2 1 simplbi ( 𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd )