Metamath Proof Explorer


Theorem gcdnegnni

Description: Negation invariance for gcd. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Hypotheses gcdnegnni.1 M
gcdnegnni.2 N
Assertion gcdnegnni M gcd -N = M gcd N

Proof

Step Hyp Ref Expression
1 gcdnegnni.1 M
2 gcdnegnni.2 N
3 1 nnzi M
4 2 nnzi N
5 3 4 pm3.2i M N
6 gcdneg M N M gcd -N = M gcd N
7 5 6 ax-mp M gcd -N = M gcd N