Metamath Proof Explorer


Theorem genpss

Description: The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
genp.2 y𝑸z𝑸yGz𝑸
Assertion genpss A𝑷B𝑷AFB𝑸

Proof

Step Hyp Ref Expression
1 genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
2 genp.2 y𝑸z𝑸yGz𝑸
3 1 2 genpelv A𝑷B𝑷fAFBgAhBf=gGh
4 elprnq A𝑷gAg𝑸
5 4 ex A𝑷gAg𝑸
6 elprnq B𝑷hBh𝑸
7 6 ex B𝑷hBh𝑸
8 5 7 im2anan9 A𝑷B𝑷gAhBg𝑸h𝑸
9 2 caovcl g𝑸h𝑸gGh𝑸
10 8 9 syl6 A𝑷B𝑷gAhBgGh𝑸
11 eleq1a gGh𝑸f=gGhf𝑸
12 10 11 syl6 A𝑷B𝑷gAhBf=gGhf𝑸
13 12 rexlimdvv A𝑷B𝑷gAhBf=gGhf𝑸
14 3 13 sylbid A𝑷B𝑷fAFBf𝑸
15 14 ssrdv A𝑷B𝑷AFB𝑸