Metamath Proof Explorer


Theorem ghmfghm

Description: The function fulfilling the conditions of ghmgrp is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses ghmabl.x X = Base G
ghmabl.y Y = Base H
ghmabl.p + ˙ = + G
ghmabl.q ˙ = + H
ghmabl.f φ x X y X F x + ˙ y = F x ˙ F y
ghmabl.1 φ F : X onto Y
ghmfghm.3 φ G Grp
Assertion ghmfghm φ F G GrpHom H

Proof

Step Hyp Ref Expression
1 ghmabl.x X = Base G
2 ghmabl.y Y = Base H
3 ghmabl.p + ˙ = + G
4 ghmabl.q ˙ = + H
5 ghmabl.f φ x X y X F x + ˙ y = F x ˙ F y
6 ghmabl.1 φ F : X onto Y
7 ghmfghm.3 φ G Grp
8 5 1 2 3 4 6 7 ghmgrp φ H Grp
9 fof F : X onto Y F : X Y
10 6 9 syl φ F : X Y
11 5 3expb φ x X y X F x + ˙ y = F x ˙ F y
12 1 2 3 4 7 8 10 11 isghmd φ F G GrpHom H