| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmabl.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
ghmabl.y |
⊢ 𝑌 = ( Base ‘ 𝐻 ) |
| 3 |
|
ghmabl.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
ghmabl.q |
⊢ ⨣ = ( +g ‘ 𝐻 ) |
| 5 |
|
ghmabl.f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 6 |
|
ghmabl.1 |
⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) |
| 7 |
|
ghmfghm.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 8 |
5 1 2 3 4 6 7
|
ghmgrp |
⊢ ( 𝜑 → 𝐻 ∈ Grp ) |
| 9 |
|
fof |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 11 |
5
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 |
1 2 3 4 7 8 10 11
|
isghmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |