Metamath Proof Explorer


Theorem ghmfghm

Description: The function fulfilling the conditions of ghmgrp is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses ghmabl.x 𝑋 = ( Base ‘ 𝐺 )
ghmabl.y 𝑌 = ( Base ‘ 𝐻 )
ghmabl.p + = ( +g𝐺 )
ghmabl.q = ( +g𝐻 )
ghmabl.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
ghmabl.1 ( 𝜑𝐹 : 𝑋onto𝑌 )
ghmfghm.3 ( 𝜑𝐺 ∈ Grp )
Assertion ghmfghm ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )

Proof

Step Hyp Ref Expression
1 ghmabl.x 𝑋 = ( Base ‘ 𝐺 )
2 ghmabl.y 𝑌 = ( Base ‘ 𝐻 )
3 ghmabl.p + = ( +g𝐺 )
4 ghmabl.q = ( +g𝐻 )
5 ghmabl.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
6 ghmabl.1 ( 𝜑𝐹 : 𝑋onto𝑌 )
7 ghmfghm.3 ( 𝜑𝐺 ∈ Grp )
8 5 1 2 3 4 6 7 ghmgrp ( 𝜑𝐻 ∈ Grp )
9 fof ( 𝐹 : 𝑋onto𝑌𝐹 : 𝑋𝑌 )
10 6 9 syl ( 𝜑𝐹 : 𝑋𝑌 )
11 5 3expb ( ( 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
12 1 2 3 4 7 8 10 11 isghmd ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )