Step |
Hyp |
Ref |
Expression |
1 |
|
ghmgrp.f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
2 |
|
ghmgrp.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
|
ghmgrp.y |
⊢ 𝑌 = ( Base ‘ 𝐻 ) |
4 |
|
ghmgrp.p |
⊢ + = ( +g ‘ 𝐺 ) |
5 |
|
ghmgrp.q |
⊢ ⨣ = ( +g ‘ 𝐻 ) |
6 |
|
ghmgrp.1 |
⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) |
7 |
|
ghmgrp.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
8 |
7
|
grpmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
9 |
1 2 3 4 5 6 8
|
mhmmnd |
⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
10 |
|
fof |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
11 |
6 10
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
12 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
13 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝐺 ∈ Grp ) |
14 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝑖 ∈ 𝑋 ) |
15 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
16 |
2 15
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑖 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝑋 ) |
17 |
13 14 16
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝑋 ) |
18 |
12 17
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ∈ 𝑌 ) |
19 |
1
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
20 |
7 16
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝑋 ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
22 |
19 20 21
|
mhmlem |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) + 𝑖 ) ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ ( 𝐹 ‘ 𝑖 ) ) ) |
23 |
22
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) + 𝑖 ) ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ ( 𝐹 ‘ 𝑖 ) ) ) |
24 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
25 |
2 4 24 15
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑖 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) + 𝑖 ) = ( 0g ‘ 𝐺 ) ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑖 ∈ 𝑋 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) + 𝑖 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) |
27 |
13 14 26
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) + 𝑖 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) |
28 |
1 2 3 4 5 6 8 24
|
mhmid |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
29 |
28
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
30 |
27 29
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) + 𝑖 ) ) = ( 0g ‘ 𝐻 ) ) |
31 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
32 |
31
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ ( 𝐹 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ 𝑎 ) ) |
33 |
23 30 32
|
3eqtr3rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) |
34 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑓 ⨣ 𝑎 ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ 𝑎 ) ) |
35 |
34
|
eqeq1d |
⊢ ( 𝑓 = ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝑓 ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ↔ ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) ) |
36 |
35
|
rspcev |
⊢ ( ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ∈ 𝑌 ∧ ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) → ∃ 𝑓 ∈ 𝑌 ( 𝑓 ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) |
37 |
18 33 36
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ∃ 𝑓 ∈ 𝑌 ( 𝑓 ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) |
38 |
|
foelrni |
⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
39 |
6 38
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
40 |
37 39
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑓 ∈ 𝑌 ( 𝑓 ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) |
41 |
40
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑌 ∃ 𝑓 ∈ 𝑌 ( 𝑓 ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) |
42 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
43 |
3 5 42
|
isgrp |
⊢ ( 𝐻 ∈ Grp ↔ ( 𝐻 ∈ Mnd ∧ ∀ 𝑎 ∈ 𝑌 ∃ 𝑓 ∈ 𝑌 ( 𝑓 ⨣ 𝑎 ) = ( 0g ‘ 𝐻 ) ) ) |
44 |
9 41 43
|
sylanbrc |
⊢ ( 𝜑 → 𝐻 ∈ Grp ) |