Description: The image of a group G under a group homomorphism F is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator O in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 25-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghmgrp.f | |
|
ghmgrp.x | |
||
ghmgrp.y | |
||
ghmgrp.p | |
||
ghmgrp.q | |
||
ghmgrp.1 | |
||
ghmgrp.3 | |
||
Assertion | ghmgrp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp.f | |
|
2 | ghmgrp.x | |
|
3 | ghmgrp.y | |
|
4 | ghmgrp.p | |
|
5 | ghmgrp.q | |
|
6 | ghmgrp.1 | |
|
7 | ghmgrp.3 | |
|
8 | 7 | grpmndd | |
9 | 1 2 3 4 5 6 8 | mhmmnd | |
10 | fof | |
|
11 | 6 10 | syl | |
12 | 11 | ad3antrrr | |
13 | 7 | ad3antrrr | |
14 | simplr | |
|
15 | eqid | |
|
16 | 2 15 | grpinvcl | |
17 | 13 14 16 | syl2anc | |
18 | 12 17 | ffvelcdmd | |
19 | 1 | 3adant1r | |
20 | 7 16 | sylan | |
21 | simpr | |
|
22 | 19 20 21 | mhmlem | |
23 | 22 | ad4ant13 | |
24 | eqid | |
|
25 | 2 4 24 15 | grplinv | |
26 | 25 | fveq2d | |
27 | 13 14 26 | syl2anc | |
28 | 1 2 3 4 5 6 8 24 | mhmid | |
29 | 28 | ad3antrrr | |
30 | 27 29 | eqtrd | |
31 | simpr | |
|
32 | 31 | oveq2d | |
33 | 23 30 32 | 3eqtr3rd | |
34 | oveq1 | |
|
35 | 34 | eqeq1d | |
36 | 35 | rspcev | |
37 | 18 33 36 | syl2anc | |
38 | foelcdmi | |
|
39 | 6 38 | sylan | |
40 | 37 39 | r19.29a | |
41 | 40 | ralrimiva | |
42 | eqid | |
|
43 | 3 5 42 | isgrp | |
44 | 9 41 43 | sylanbrc | |