Metamath Proof Explorer


Theorem ghmgrp

Description: The image of a group G under a group homomorphism F is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator O in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 25-Jan-2020)

Ref Expression
Hypotheses ghmgrp.f φxXyXFx+˙y=Fx˙Fy
ghmgrp.x X=BaseG
ghmgrp.y Y=BaseH
ghmgrp.p +˙=+G
ghmgrp.q ˙=+H
ghmgrp.1 φF:XontoY
ghmgrp.3 φGGrp
Assertion ghmgrp φHGrp

Proof

Step Hyp Ref Expression
1 ghmgrp.f φxXyXFx+˙y=Fx˙Fy
2 ghmgrp.x X=BaseG
3 ghmgrp.y Y=BaseH
4 ghmgrp.p +˙=+G
5 ghmgrp.q ˙=+H
6 ghmgrp.1 φF:XontoY
7 ghmgrp.3 φGGrp
8 7 grpmndd φGMnd
9 1 2 3 4 5 6 8 mhmmnd φHMnd
10 fof F:XontoYF:XY
11 6 10 syl φF:XY
12 11 ad3antrrr φaYiXFi=aF:XY
13 7 ad3antrrr φaYiXFi=aGGrp
14 simplr φaYiXFi=aiX
15 eqid invgG=invgG
16 2 15 grpinvcl GGrpiXinvgGiX
17 13 14 16 syl2anc φaYiXFi=ainvgGiX
18 12 17 ffvelcdmd φaYiXFi=aFinvgGiY
19 1 3adant1r φiXxXyXFx+˙y=Fx˙Fy
20 7 16 sylan φiXinvgGiX
21 simpr φiXiX
22 19 20 21 mhmlem φiXFinvgGi+˙i=FinvgGi˙Fi
23 22 ad4ant13 φaYiXFi=aFinvgGi+˙i=FinvgGi˙Fi
24 eqid 0G=0G
25 2 4 24 15 grplinv GGrpiXinvgGi+˙i=0G
26 25 fveq2d GGrpiXFinvgGi+˙i=F0G
27 13 14 26 syl2anc φaYiXFi=aFinvgGi+˙i=F0G
28 1 2 3 4 5 6 8 24 mhmid φF0G=0H
29 28 ad3antrrr φaYiXFi=aF0G=0H
30 27 29 eqtrd φaYiXFi=aFinvgGi+˙i=0H
31 simpr φaYiXFi=aFi=a
32 31 oveq2d φaYiXFi=aFinvgGi˙Fi=FinvgGi˙a
33 23 30 32 3eqtr3rd φaYiXFi=aFinvgGi˙a=0H
34 oveq1 f=FinvgGif˙a=FinvgGi˙a
35 34 eqeq1d f=FinvgGif˙a=0HFinvgGi˙a=0H
36 35 rspcev FinvgGiYFinvgGi˙a=0HfYf˙a=0H
37 18 33 36 syl2anc φaYiXFi=afYf˙a=0H
38 foelcdmi F:XontoYaYiXFi=a
39 6 38 sylan φaYiXFi=a
40 37 39 r19.29a φaYfYf˙a=0H
41 40 ralrimiva φaYfYf˙a=0H
42 eqid 0H=0H
43 3 5 42 isgrp HGrpHMndaYfYf˙a=0H
44 9 41 43 sylanbrc φHGrp