Metamath Proof Explorer


Theorem mhmlem

Description: Lemma for mhmmnd and ghmgrp . (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 25-Jan-2020)

Ref Expression
Hypotheses ghmgrp.f φxXyXFx+˙y=Fx˙Fy
mhmlem.a φAX
mhmlem.b φBX
Assertion mhmlem φFA+˙B=FA˙FB

Proof

Step Hyp Ref Expression
1 ghmgrp.f φxXyXFx+˙y=Fx˙Fy
2 mhmlem.a φAX
3 mhmlem.b φBX
4 id φφ
5 eleq1 x=AxXAX
6 5 3anbi2d x=AφxXyXφAXyX
7 fvoveq1 x=AFx+˙y=FA+˙y
8 fveq2 x=AFx=FA
9 8 oveq1d x=AFx˙Fy=FA˙Fy
10 7 9 eqeq12d x=AFx+˙y=Fx˙FyFA+˙y=FA˙Fy
11 6 10 imbi12d x=AφxXyXFx+˙y=Fx˙FyφAXyXFA+˙y=FA˙Fy
12 eleq1 y=ByXBX
13 12 3anbi3d y=BφAXyXφAXBX
14 oveq2 y=BA+˙y=A+˙B
15 14 fveq2d y=BFA+˙y=FA+˙B
16 fveq2 y=BFy=FB
17 16 oveq2d y=BFA˙Fy=FA˙FB
18 15 17 eqeq12d y=BFA+˙y=FA˙FyFA+˙B=FA˙FB
19 13 18 imbi12d y=BφAXyXFA+˙y=FA˙FyφAXBXFA+˙B=FA˙FB
20 11 19 1 vtocl2g AXBXφAXBXFA+˙B=FA˙FB
21 2 3 20 syl2anc φφAXBXFA+˙B=FA˙FB
22 4 2 3 21 mp3and φFA+˙B=FA˙FB