Description: Lemma for mhmmnd and ghmgrp . (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 25-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghmgrp.f | |
|
mhmlem.a | |
||
mhmlem.b | |
||
Assertion | mhmlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp.f | |
|
2 | mhmlem.a | |
|
3 | mhmlem.b | |
|
4 | id | |
|
5 | eleq1 | |
|
6 | 5 | 3anbi2d | |
7 | fvoveq1 | |
|
8 | fveq2 | |
|
9 | 8 | oveq1d | |
10 | 7 9 | eqeq12d | |
11 | 6 10 | imbi12d | |
12 | eleq1 | |
|
13 | 12 | 3anbi3d | |
14 | oveq2 | |
|
15 | 14 | fveq2d | |
16 | fveq2 | |
|
17 | 16 | oveq2d | |
18 | 15 17 | eqeq12d | |
19 | 13 18 | imbi12d | |
20 | 11 19 1 | vtocl2g | |
21 | 2 3 20 | syl2anc | |
22 | 4 2 3 21 | mp3and | |