Metamath Proof Explorer


Theorem mhmid

Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020)

Ref Expression
Hypotheses ghmgrp.f φxXyXFx+˙y=Fx˙Fy
ghmgrp.x X=BaseG
ghmgrp.y Y=BaseH
ghmgrp.p +˙=+G
ghmgrp.q ˙=+H
ghmgrp.1 φF:XontoY
mhmmnd.3 φGMnd
mhmid.0 0˙=0G
Assertion mhmid φF0˙=0H

Proof

Step Hyp Ref Expression
1 ghmgrp.f φxXyXFx+˙y=Fx˙Fy
2 ghmgrp.x X=BaseG
3 ghmgrp.y Y=BaseH
4 ghmgrp.p +˙=+G
5 ghmgrp.q ˙=+H
6 ghmgrp.1 φF:XontoY
7 mhmmnd.3 φGMnd
8 mhmid.0 0˙=0G
9 eqid 0H=0H
10 fof F:XontoYF:XY
11 6 10 syl φF:XY
12 2 8 mndidcl GMnd0˙X
13 7 12 syl φ0˙X
14 11 13 ffvelcdmd φF0˙Y
15 simplll φaYiXFi=aφ
16 15 1 syl3an1 φaYiXFi=axXyXFx+˙y=Fx˙Fy
17 7 ad3antrrr φaYiXFi=aGMnd
18 17 12 syl φaYiXFi=a0˙X
19 simplr φaYiXFi=aiX
20 16 18 19 mhmlem φaYiXFi=aF0˙+˙i=F0˙˙Fi
21 2 4 8 mndlid GMndiX0˙+˙i=i
22 17 19 21 syl2anc φaYiXFi=a0˙+˙i=i
23 22 fveq2d φaYiXFi=aF0˙+˙i=Fi
24 20 23 eqtr3d φaYiXFi=aF0˙˙Fi=Fi
25 simpr φaYiXFi=aFi=a
26 25 oveq2d φaYiXFi=aF0˙˙Fi=F0˙˙a
27 24 26 25 3eqtr3d φaYiXFi=aF0˙˙a=a
28 foelcdmi F:XontoYaYiXFi=a
29 6 28 sylan φaYiXFi=a
30 27 29 r19.29a φaYF0˙˙a=a
31 16 19 18 mhmlem φaYiXFi=aFi+˙0˙=Fi˙F0˙
32 2 4 8 mndrid GMndiXi+˙0˙=i
33 17 19 32 syl2anc φaYiXFi=ai+˙0˙=i
34 33 fveq2d φaYiXFi=aFi+˙0˙=Fi
35 31 34 eqtr3d φaYiXFi=aFi˙F0˙=Fi
36 25 oveq1d φaYiXFi=aFi˙F0˙=a˙F0˙
37 35 36 25 3eqtr3d φaYiXFi=aa˙F0˙=a
38 37 29 r19.29a φaYa˙F0˙=a
39 3 9 5 14 30 38 ismgmid2 φF0˙=0H