Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghmgrp.f | |
|
ghmgrp.x | |
||
ghmgrp.y | |
||
ghmgrp.p | |
||
ghmgrp.q | |
||
ghmgrp.1 | |
||
mhmmnd.3 | |
||
mhmid.0 | |
||
Assertion | mhmid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp.f | |
|
2 | ghmgrp.x | |
|
3 | ghmgrp.y | |
|
4 | ghmgrp.p | |
|
5 | ghmgrp.q | |
|
6 | ghmgrp.1 | |
|
7 | mhmmnd.3 | |
|
8 | mhmid.0 | |
|
9 | eqid | |
|
10 | fof | |
|
11 | 6 10 | syl | |
12 | 2 8 | mndidcl | |
13 | 7 12 | syl | |
14 | 11 13 | ffvelcdmd | |
15 | simplll | |
|
16 | 15 1 | syl3an1 | |
17 | 7 | ad3antrrr | |
18 | 17 12 | syl | |
19 | simplr | |
|
20 | 16 18 19 | mhmlem | |
21 | 2 4 8 | mndlid | |
22 | 17 19 21 | syl2anc | |
23 | 22 | fveq2d | |
24 | 20 23 | eqtr3d | |
25 | simpr | |
|
26 | 25 | oveq2d | |
27 | 24 26 25 | 3eqtr3d | |
28 | foelcdmi | |
|
29 | 6 28 | sylan | |
30 | 27 29 | r19.29a | |
31 | 16 19 18 | mhmlem | |
32 | 2 4 8 | mndrid | |
33 | 17 19 32 | syl2anc | |
34 | 33 | fveq2d | |
35 | 31 34 | eqtr3d | |
36 | 25 | oveq1d | |
37 | 35 36 25 | 3eqtr3d | |
38 | 37 29 | r19.29a | |
39 | 3 9 5 14 30 38 | ismgmid2 | |