| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmgrp.f | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 2 |  | mhmlem.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 3 |  | mhmlem.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑋 ) | 
						
							| 4 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  𝑋  ↔  𝐴  ∈  𝑋 ) ) | 
						
							| 6 | 5 | 3anbi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ↔  ( 𝜑  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) ) | 
						
							| 7 |  | fvoveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( 𝐹 ‘ ( 𝐴  +  𝑦 ) ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝐴 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 10 | 7 9 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 𝐹 ‘ ( 𝐴  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝐴 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 11 | 6 10 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( ( 𝜑  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝐴  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝐴 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 12 |  | eleq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ∈  𝑋  ↔  𝐵  ∈  𝑋 ) ) | 
						
							| 13 | 12 | 3anbi3d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝜑  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ↔  ( 𝜑  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  +  𝑦 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝐹 ‘ ( 𝐴  +  𝑦 ) )  =  ( 𝐹 ‘ ( 𝐴  +  𝐵 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐹 ‘ 𝐴 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝐴 )  ⨣  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 18 | 15 17 | eqeq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐹 ‘ ( 𝐴  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝐴 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 𝐹 ‘ ( 𝐴  +  𝐵 ) )  =  ( ( 𝐹 ‘ 𝐴 )  ⨣  ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 19 | 13 18 | imbi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝜑  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝐴  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝐴 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( ( 𝜑  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝐴  +  𝐵 ) )  =  ( ( 𝐹 ‘ 𝐴 )  ⨣  ( 𝐹 ‘ 𝐵 ) ) ) ) ) | 
						
							| 20 | 11 19 1 | vtocl2g | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝜑  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝐴  +  𝐵 ) )  =  ( ( 𝐹 ‘ 𝐴 )  ⨣  ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 21 | 2 3 20 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝜑  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝐴  +  𝐵 ) )  =  ( ( 𝐹 ‘ 𝐴 )  ⨣  ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 22 | 4 2 3 21 | mp3and | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐴  +  𝐵 ) )  =  ( ( 𝐹 ‘ 𝐴 )  ⨣  ( 𝐹 ‘ 𝐵 ) ) ) |