Metamath Proof Explorer


Theorem mhmmnd

Description: The image of a monoid G under a monoid homomorphism F is a monoid. (Contributed by Thierry Arnoux, 25-Jan-2020)

Ref Expression
Hypotheses ghmgrp.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
ghmgrp.x 𝑋 = ( Base ‘ 𝐺 )
ghmgrp.y 𝑌 = ( Base ‘ 𝐻 )
ghmgrp.p + = ( +g𝐺 )
ghmgrp.q = ( +g𝐻 )
ghmgrp.1 ( 𝜑𝐹 : 𝑋onto𝑌 )
mhmmnd.3 ( 𝜑𝐺 ∈ Mnd )
Assertion mhmmnd ( 𝜑𝐻 ∈ Mnd )

Proof

Step Hyp Ref Expression
1 ghmgrp.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
2 ghmgrp.x 𝑋 = ( Base ‘ 𝐺 )
3 ghmgrp.y 𝑌 = ( Base ‘ 𝐻 )
4 ghmgrp.p + = ( +g𝐺 )
5 ghmgrp.q = ( +g𝐻 )
6 ghmgrp.1 ( 𝜑𝐹 : 𝑋onto𝑌 )
7 mhmmnd.3 ( 𝜑𝐺 ∈ Mnd )
8 simpllr ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → ( 𝐹𝑖 ) = 𝑎 )
9 simpr ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → ( 𝐹𝑗 ) = 𝑏 )
10 8 9 oveq12d ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → ( ( 𝐹𝑖 ) ( 𝐹𝑗 ) ) = ( 𝑎 𝑏 ) )
11 simp-5l ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → 𝜑 )
12 11 1 syl3an1 ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
13 simp-4r ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → 𝑖𝑋 )
14 simplr ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → 𝑗𝑋 )
15 12 13 14 mhmlem ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐹𝑖 ) ( 𝐹𝑗 ) ) )
16 fof ( 𝐹 : 𝑋onto𝑌𝐹 : 𝑋𝑌 )
17 6 16 syl ( 𝜑𝐹 : 𝑋𝑌 )
18 17 ad5antr ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → 𝐹 : 𝑋𝑌 )
19 7 ad5antr ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → 𝐺 ∈ Mnd )
20 2 4 mndcl ( ( 𝐺 ∈ Mnd ∧ 𝑖𝑋𝑗𝑋 ) → ( 𝑖 + 𝑗 ) ∈ 𝑋 )
21 19 13 14 20 syl3anc ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → ( 𝑖 + 𝑗 ) ∈ 𝑋 )
22 18 21 ffvelrnd ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) ∈ 𝑌 )
23 15 22 eqeltrrd ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → ( ( 𝐹𝑖 ) ( 𝐹𝑗 ) ) ∈ 𝑌 )
24 10 23 eqeltrrd ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → ( 𝑎 𝑏 ) ∈ 𝑌 )
25 simpr ( ( 𝑎𝑌𝑏𝑌 ) → 𝑏𝑌 )
26 foelrni ( ( 𝐹 : 𝑋onto𝑌𝑏𝑌 ) → ∃ 𝑗𝑋 ( 𝐹𝑗 ) = 𝑏 )
27 6 25 26 syl2an ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) → ∃ 𝑗𝑋 ( 𝐹𝑗 ) = 𝑏 )
28 27 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ∃ 𝑗𝑋 ( 𝐹𝑗 ) = 𝑏 )
29 24 28 r19.29a ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝑎 𝑏 ) ∈ 𝑌 )
30 simpl ( ( 𝑎𝑌𝑏𝑌 ) → 𝑎𝑌 )
31 foelrni ( ( 𝐹 : 𝑋onto𝑌𝑎𝑌 ) → ∃ 𝑖𝑋 ( 𝐹𝑖 ) = 𝑎 )
32 6 30 31 syl2an ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) → ∃ 𝑖𝑋 ( 𝐹𝑖 ) = 𝑎 )
33 29 32 r19.29a ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) → ( 𝑎 𝑏 ) ∈ 𝑌 )
34 simpll ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑐𝑌 ) → 𝜑 )
35 simplrl ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑐𝑌 ) → 𝑎𝑌 )
36 simplrr ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑐𝑌 ) → 𝑏𝑌 )
37 simpr ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑐𝑌 ) → 𝑐𝑌 )
38 7 ad2antrr ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) → 𝐺 ∈ Mnd )
39 38 ad5antr ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → 𝐺 ∈ Mnd )
40 simp-6r ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → 𝑖𝑋 )
41 simp-4r ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → 𝑗𝑋 )
42 simplr ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → 𝑘𝑋 )
43 2 4 mndass ( ( 𝐺 ∈ Mnd ∧ ( 𝑖𝑋𝑗𝑋𝑘𝑋 ) ) → ( ( 𝑖 + 𝑗 ) + 𝑘 ) = ( 𝑖 + ( 𝑗 + 𝑘 ) ) )
44 39 40 41 42 43 syl13anc ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( ( 𝑖 + 𝑗 ) + 𝑘 ) = ( 𝑖 + ( 𝑗 + 𝑘 ) ) )
45 44 fveq2d ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( ( 𝑖 + 𝑗 ) + 𝑘 ) ) = ( 𝐹 ‘ ( 𝑖 + ( 𝑗 + 𝑘 ) ) ) )
46 simp-7l ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → 𝜑 )
47 46 1 syl3an1 ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) ∧ 𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
48 39 40 41 20 syl3anc ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( 𝑖 + 𝑗 ) ∈ 𝑋 )
49 47 48 42 mhmlem ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( ( 𝑖 + 𝑗 ) + 𝑘 ) ) = ( ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) ( 𝐹𝑘 ) ) )
50 2 4 mndcl ( ( 𝐺 ∈ Mnd ∧ 𝑗𝑋𝑘𝑋 ) → ( 𝑗 + 𝑘 ) ∈ 𝑋 )
51 39 41 42 50 syl3anc ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( 𝑗 + 𝑘 ) ∈ 𝑋 )
52 47 40 51 mhmlem ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝑖 + ( 𝑗 + 𝑘 ) ) ) = ( ( 𝐹𝑖 ) ( 𝐹 ‘ ( 𝑗 + 𝑘 ) ) ) )
53 45 49 52 3eqtr3d ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) ( 𝐹𝑘 ) ) = ( ( 𝐹𝑖 ) ( 𝐹 ‘ ( 𝑗 + 𝑘 ) ) ) )
54 simp1 ( ( 𝜑𝑖𝑋𝑗𝑋 ) → 𝜑 )
55 54 1 syl3an1 ( ( ( 𝜑𝑖𝑋𝑗𝑋 ) ∧ 𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
56 simp2 ( ( 𝜑𝑖𝑋𝑗𝑋 ) → 𝑖𝑋 )
57 simp3 ( ( 𝜑𝑖𝑋𝑗𝑋 ) → 𝑗𝑋 )
58 55 56 57 mhmlem ( ( 𝜑𝑖𝑋𝑗𝑋 ) → ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐹𝑖 ) ( 𝐹𝑗 ) ) )
59 46 40 41 58 syl3anc ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐹𝑖 ) ( 𝐹𝑗 ) ) )
60 59 oveq1d ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) ( 𝐹𝑘 ) ) = ( ( ( 𝐹𝑖 ) ( 𝐹𝑗 ) ) ( 𝐹𝑘 ) ) )
61 47 41 42 mhmlem ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝑗 + 𝑘 ) ) = ( ( 𝐹𝑗 ) ( 𝐹𝑘 ) ) )
62 61 oveq2d ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( ( 𝐹𝑖 ) ( 𝐹 ‘ ( 𝑗 + 𝑘 ) ) ) = ( ( 𝐹𝑖 ) ( ( 𝐹𝑗 ) ( 𝐹𝑘 ) ) ) )
63 53 60 62 3eqtr3d ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( ( ( 𝐹𝑖 ) ( 𝐹𝑗 ) ) ( 𝐹𝑘 ) ) = ( ( 𝐹𝑖 ) ( ( 𝐹𝑗 ) ( 𝐹𝑘 ) ) ) )
64 simp-5r ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( 𝐹𝑖 ) = 𝑎 )
65 simpllr ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( 𝐹𝑗 ) = 𝑏 )
66 64 65 oveq12d ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( ( 𝐹𝑖 ) ( 𝐹𝑗 ) ) = ( 𝑎 𝑏 ) )
67 simpr ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( 𝐹𝑘 ) = 𝑐 )
68 66 67 oveq12d ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( ( ( 𝐹𝑖 ) ( 𝐹𝑗 ) ) ( 𝐹𝑘 ) ) = ( ( 𝑎 𝑏 ) 𝑐 ) )
69 65 67 oveq12d ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( ( 𝐹𝑗 ) ( 𝐹𝑘 ) ) = ( 𝑏 𝑐 ) )
70 64 69 oveq12d ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( ( 𝐹𝑖 ) ( ( 𝐹𝑗 ) ( 𝐹𝑘 ) ) ) = ( 𝑎 ( 𝑏 𝑐 ) ) )
71 63 68 70 3eqtr3d ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) ∧ 𝑘𝑋 ) ∧ ( 𝐹𝑘 ) = 𝑐 ) → ( ( 𝑎 𝑏 ) 𝑐 ) = ( 𝑎 ( 𝑏 𝑐 ) ) )
72 foelrni ( ( 𝐹 : 𝑋onto𝑌𝑐𝑌 ) → ∃ 𝑘𝑋 ( 𝐹𝑘 ) = 𝑐 )
73 6 72 sylan ( ( 𝜑𝑐𝑌 ) → ∃ 𝑘𝑋 ( 𝐹𝑘 ) = 𝑐 )
74 73 3ad2antr3 ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) → ∃ 𝑘𝑋 ( 𝐹𝑘 ) = 𝑐 )
75 74 ad4antr ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → ∃ 𝑘𝑋 ( 𝐹𝑘 ) = 𝑐 )
76 71 75 r19.29a ( ( ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑗𝑋 ) ∧ ( 𝐹𝑗 ) = 𝑏 ) → ( ( 𝑎 𝑏 ) 𝑐 ) = ( 𝑎 ( 𝑏 𝑐 ) ) )
77 27 3adantr3 ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) → ∃ 𝑗𝑋 ( 𝐹𝑗 ) = 𝑏 )
78 77 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ∃ 𝑗𝑋 ( 𝐹𝑗 ) = 𝑏 )
79 76 78 r19.29a ( ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( 𝑎 𝑏 ) 𝑐 ) = ( 𝑎 ( 𝑏 𝑐 ) ) )
80 32 3adantr3 ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) → ∃ 𝑖𝑋 ( 𝐹𝑖 ) = 𝑎 )
81 79 80 r19.29a ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌𝑐𝑌 ) ) → ( ( 𝑎 𝑏 ) 𝑐 ) = ( 𝑎 ( 𝑏 𝑐 ) ) )
82 34 35 36 37 81 syl13anc ( ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) ∧ 𝑐𝑌 ) → ( ( 𝑎 𝑏 ) 𝑐 ) = ( 𝑎 ( 𝑏 𝑐 ) ) )
83 82 ralrimiva ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) → ∀ 𝑐𝑌 ( ( 𝑎 𝑏 ) 𝑐 ) = ( 𝑎 ( 𝑏 𝑐 ) ) )
84 33 83 jca ( ( 𝜑 ∧ ( 𝑎𝑌𝑏𝑌 ) ) → ( ( 𝑎 𝑏 ) ∈ 𝑌 ∧ ∀ 𝑐𝑌 ( ( 𝑎 𝑏 ) 𝑐 ) = ( 𝑎 ( 𝑏 𝑐 ) ) ) )
85 84 ralrimivva ( 𝜑 → ∀ 𝑎𝑌𝑏𝑌 ( ( 𝑎 𝑏 ) ∈ 𝑌 ∧ ∀ 𝑐𝑌 ( ( 𝑎 𝑏 ) 𝑐 ) = ( 𝑎 ( 𝑏 𝑐 ) ) ) )
86 eqid ( 0g𝐺 ) = ( 0g𝐺 )
87 2 86 mndidcl ( 𝐺 ∈ Mnd → ( 0g𝐺 ) ∈ 𝑋 )
88 7 87 syl ( 𝜑 → ( 0g𝐺 ) ∈ 𝑋 )
89 17 88 ffvelrnd ( 𝜑 → ( 𝐹 ‘ ( 0g𝐺 ) ) ∈ 𝑌 )
90 simplll ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → 𝜑 )
91 90 1 syl3an1 ( ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
92 7 ad3antrrr ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → 𝐺 ∈ Mnd )
93 92 87 syl ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 0g𝐺 ) ∈ 𝑋 )
94 simplr ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → 𝑖𝑋 )
95 91 93 94 mhmlem ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( 0g𝐺 ) + 𝑖 ) ) = ( ( 𝐹 ‘ ( 0g𝐺 ) ) ( 𝐹𝑖 ) ) )
96 2 4 86 mndlid ( ( 𝐺 ∈ Mnd ∧ 𝑖𝑋 ) → ( ( 0g𝐺 ) + 𝑖 ) = 𝑖 )
97 92 94 96 syl2anc ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( 0g𝐺 ) + 𝑖 ) = 𝑖 )
98 97 fveq2d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( 0g𝐺 ) + 𝑖 ) ) = ( 𝐹𝑖 ) )
99 95 98 eqtr3d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( 0g𝐺 ) ) ( 𝐹𝑖 ) ) = ( 𝐹𝑖 ) )
100 simpr ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝐹𝑖 ) = 𝑎 )
101 100 oveq2d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( 0g𝐺 ) ) ( 𝐹𝑖 ) ) = ( ( 𝐹 ‘ ( 0g𝐺 ) ) 𝑎 ) )
102 99 101 100 3eqtr3d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( 0g𝐺 ) ) 𝑎 ) = 𝑎 )
103 91 94 93 mhmlem ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 𝑖 + ( 0g𝐺 ) ) ) = ( ( 𝐹𝑖 ) ( 𝐹 ‘ ( 0g𝐺 ) ) ) )
104 2 4 86 mndrid ( ( 𝐺 ∈ Mnd ∧ 𝑖𝑋 ) → ( 𝑖 + ( 0g𝐺 ) ) = 𝑖 )
105 92 94 104 syl2anc ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝑖 + ( 0g𝐺 ) ) = 𝑖 )
106 105 fveq2d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 𝑖 + ( 0g𝐺 ) ) ) = ( 𝐹𝑖 ) )
107 103 106 eqtr3d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( 𝐹𝑖 ) ( 𝐹 ‘ ( 0g𝐺 ) ) ) = ( 𝐹𝑖 ) )
108 100 oveq1d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( 𝐹𝑖 ) ( 𝐹 ‘ ( 0g𝐺 ) ) ) = ( 𝑎 ( 𝐹 ‘ ( 0g𝐺 ) ) ) )
109 107 108 100 3eqtr3d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝑎 ( 𝐹 ‘ ( 0g𝐺 ) ) ) = 𝑎 )
110 102 109 jca ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( ( 𝐹 ‘ ( 0g𝐺 ) ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( 𝐹 ‘ ( 0g𝐺 ) ) ) = 𝑎 ) )
111 6 31 sylan ( ( 𝜑𝑎𝑌 ) → ∃ 𝑖𝑋 ( 𝐹𝑖 ) = 𝑎 )
112 110 111 r19.29a ( ( 𝜑𝑎𝑌 ) → ( ( ( 𝐹 ‘ ( 0g𝐺 ) ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( 𝐹 ‘ ( 0g𝐺 ) ) ) = 𝑎 ) )
113 112 ralrimiva ( 𝜑 → ∀ 𝑎𝑌 ( ( ( 𝐹 ‘ ( 0g𝐺 ) ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( 𝐹 ‘ ( 0g𝐺 ) ) ) = 𝑎 ) )
114 oveq1 ( 𝑑 = ( 𝐹 ‘ ( 0g𝐺 ) ) → ( 𝑑 𝑎 ) = ( ( 𝐹 ‘ ( 0g𝐺 ) ) 𝑎 ) )
115 114 eqeq1d ( 𝑑 = ( 𝐹 ‘ ( 0g𝐺 ) ) → ( ( 𝑑 𝑎 ) = 𝑎 ↔ ( ( 𝐹 ‘ ( 0g𝐺 ) ) 𝑎 ) = 𝑎 ) )
116 115 ovanraleqv ( 𝑑 = ( 𝐹 ‘ ( 0g𝐺 ) ) → ( ∀ 𝑎𝑌 ( ( 𝑑 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑑 ) = 𝑎 ) ↔ ∀ 𝑎𝑌 ( ( ( 𝐹 ‘ ( 0g𝐺 ) ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( 𝐹 ‘ ( 0g𝐺 ) ) ) = 𝑎 ) ) )
117 116 rspcev ( ( ( 𝐹 ‘ ( 0g𝐺 ) ) ∈ 𝑌 ∧ ∀ 𝑎𝑌 ( ( ( 𝐹 ‘ ( 0g𝐺 ) ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( 𝐹 ‘ ( 0g𝐺 ) ) ) = 𝑎 ) ) → ∃ 𝑑𝑌𝑎𝑌 ( ( 𝑑 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑑 ) = 𝑎 ) )
118 89 113 117 syl2anc ( 𝜑 → ∃ 𝑑𝑌𝑎𝑌 ( ( 𝑑 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑑 ) = 𝑎 ) )
119 3 5 ismnd ( 𝐻 ∈ Mnd ↔ ( ∀ 𝑎𝑌𝑏𝑌 ( ( 𝑎 𝑏 ) ∈ 𝑌 ∧ ∀ 𝑐𝑌 ( ( 𝑎 𝑏 ) 𝑐 ) = ( 𝑎 ( 𝑏 𝑐 ) ) ) ∧ ∃ 𝑑𝑌𝑎𝑌 ( ( 𝑑 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑑 ) = 𝑎 ) ) )
120 85 118 119 sylanbrc ( 𝜑𝐻 ∈ Mnd )