| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmgrp.f | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 2 |  | ghmgrp.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | ghmgrp.y | ⊢ 𝑌  =  ( Base ‘ 𝐻 ) | 
						
							| 4 |  | ghmgrp.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 5 |  | ghmgrp.q | ⊢  ⨣   =  ( +g ‘ 𝐻 ) | 
						
							| 6 |  | ghmgrp.1 | ⊢ ( 𝜑  →  𝐹 : 𝑋 –onto→ 𝑌 ) | 
						
							| 7 |  | mhmmnd.3 | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 8 |  | simpllr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  ( 𝐹 ‘ 𝑖 )  =  𝑎 ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  ( 𝐹 ‘ 𝑗 )  =  𝑏 ) | 
						
							| 10 | 8 9 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑎  ⨣  𝑏 ) ) | 
						
							| 11 |  | simp-5l | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  𝜑 ) | 
						
							| 12 | 11 1 | syl3an1 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 13 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  𝑖  ∈  𝑋 ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  𝑗  ∈  𝑋 ) | 
						
							| 15 | 12 13 14 | mhmlem | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  ( 𝐹 ‘ ( 𝑖  +  𝑗 ) )  =  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 16 |  | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 17 | 6 16 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 18 | 17 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 19 | 7 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  𝐺  ∈  Mnd ) | 
						
							| 20 | 2 4 | mndcl | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑖  ∈  𝑋  ∧  𝑗  ∈  𝑋 )  →  ( 𝑖  +  𝑗 )  ∈  𝑋 ) | 
						
							| 21 | 19 13 14 20 | syl3anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  ( 𝑖  +  𝑗 )  ∈  𝑋 ) | 
						
							| 22 | 18 21 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  ( 𝐹 ‘ ( 𝑖  +  𝑗 ) )  ∈  𝑌 ) | 
						
							| 23 | 15 22 | eqeltrrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ 𝑗 ) )  ∈  𝑌 ) | 
						
							| 24 | 10 23 | eqeltrrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  ( 𝑎  ⨣  𝑏 )  ∈  𝑌 ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 )  →  𝑏  ∈  𝑌 ) | 
						
							| 26 |  | foelcdmi | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌  ∧  𝑏  ∈  𝑌 )  →  ∃ 𝑗  ∈  𝑋 ( 𝐹 ‘ 𝑗 )  =  𝑏 ) | 
						
							| 27 | 6 25 26 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  →  ∃ 𝑗  ∈  𝑋 ( 𝐹 ‘ 𝑗 )  =  𝑏 ) | 
						
							| 28 | 27 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ∃ 𝑗  ∈  𝑋 ( 𝐹 ‘ 𝑗 )  =  𝑏 ) | 
						
							| 29 | 24 28 | r19.29a | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( 𝑎  ⨣  𝑏 )  ∈  𝑌 ) | 
						
							| 30 |  | simpl | ⊢ ( ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 )  →  𝑎  ∈  𝑌 ) | 
						
							| 31 |  | foelcdmi | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌  ∧  𝑎  ∈  𝑌 )  →  ∃ 𝑖  ∈  𝑋 ( 𝐹 ‘ 𝑖 )  =  𝑎 ) | 
						
							| 32 | 6 30 31 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  →  ∃ 𝑖  ∈  𝑋 ( 𝐹 ‘ 𝑖 )  =  𝑎 ) | 
						
							| 33 | 29 32 | r19.29a | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  →  ( 𝑎  ⨣  𝑏 )  ∈  𝑌 ) | 
						
							| 34 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑐  ∈  𝑌 )  →  𝜑 ) | 
						
							| 35 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑐  ∈  𝑌 )  →  𝑎  ∈  𝑌 ) | 
						
							| 36 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑐  ∈  𝑌 )  →  𝑏  ∈  𝑌 ) | 
						
							| 37 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑐  ∈  𝑌 )  →  𝑐  ∈  𝑌 ) | 
						
							| 38 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  →  𝐺  ∈  Mnd ) | 
						
							| 39 | 38 | ad5antr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  𝐺  ∈  Mnd ) | 
						
							| 40 |  | simp-6r | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  𝑖  ∈  𝑋 ) | 
						
							| 41 |  | simp-4r | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  𝑗  ∈  𝑋 ) | 
						
							| 42 |  | simplr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  𝑘  ∈  𝑋 ) | 
						
							| 43 | 2 4 | mndass | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑖  ∈  𝑋  ∧  𝑗  ∈  𝑋  ∧  𝑘  ∈  𝑋 ) )  →  ( ( 𝑖  +  𝑗 )  +  𝑘 )  =  ( 𝑖  +  ( 𝑗  +  𝑘 ) ) ) | 
						
							| 44 | 39 40 41 42 43 | syl13anc | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( ( 𝑖  +  𝑗 )  +  𝑘 )  =  ( 𝑖  +  ( 𝑗  +  𝑘 ) ) ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( 𝐹 ‘ ( ( 𝑖  +  𝑗 )  +  𝑘 ) )  =  ( 𝐹 ‘ ( 𝑖  +  ( 𝑗  +  𝑘 ) ) ) ) | 
						
							| 46 |  | simp-7l | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  𝜑 ) | 
						
							| 47 | 46 1 | syl3an1 | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 48 | 39 40 41 20 | syl3anc | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( 𝑖  +  𝑗 )  ∈  𝑋 ) | 
						
							| 49 | 47 48 42 | mhmlem | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( 𝐹 ‘ ( ( 𝑖  +  𝑗 )  +  𝑘 ) )  =  ( ( 𝐹 ‘ ( 𝑖  +  𝑗 ) )  ⨣  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 50 | 2 4 | mndcl | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑗  ∈  𝑋  ∧  𝑘  ∈  𝑋 )  →  ( 𝑗  +  𝑘 )  ∈  𝑋 ) | 
						
							| 51 | 39 41 42 50 | syl3anc | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( 𝑗  +  𝑘 )  ∈  𝑋 ) | 
						
							| 52 | 47 40 51 | mhmlem | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( 𝐹 ‘ ( 𝑖  +  ( 𝑗  +  𝑘 ) ) )  =  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ ( 𝑗  +  𝑘 ) ) ) ) | 
						
							| 53 | 45 49 52 | 3eqtr3d | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( ( 𝐹 ‘ ( 𝑖  +  𝑗 ) )  ⨣  ( 𝐹 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ ( 𝑗  +  𝑘 ) ) ) ) | 
						
							| 54 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋  ∧  𝑗  ∈  𝑋 )  →  𝜑 ) | 
						
							| 55 | 54 1 | syl3an1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋  ∧  𝑗  ∈  𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 56 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋  ∧  𝑗  ∈  𝑋 )  →  𝑖  ∈  𝑋 ) | 
						
							| 57 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋  ∧  𝑗  ∈  𝑋 )  →  𝑗  ∈  𝑋 ) | 
						
							| 58 | 55 56 57 | mhmlem | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋  ∧  𝑗  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝑖  +  𝑗 ) )  =  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 59 | 46 40 41 58 | syl3anc | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( 𝐹 ‘ ( 𝑖  +  𝑗 ) )  =  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( ( 𝐹 ‘ ( 𝑖  +  𝑗 ) )  ⨣  ( 𝐹 ‘ 𝑘 ) )  =  ( ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ 𝑗 ) )  ⨣  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 61 | 47 41 42 | mhmlem | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( 𝐹 ‘ ( 𝑗  +  𝑘 ) )  =  ( ( 𝐹 ‘ 𝑗 )  ⨣  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ ( 𝑗  +  𝑘 ) ) )  =  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( ( 𝐹 ‘ 𝑗 )  ⨣  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 63 | 53 60 62 | 3eqtr3d | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ 𝑗 ) )  ⨣  ( 𝐹 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( ( 𝐹 ‘ 𝑗 )  ⨣  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 64 |  | simp-5r | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( 𝐹 ‘ 𝑖 )  =  𝑎 ) | 
						
							| 65 |  | simpllr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( 𝐹 ‘ 𝑗 )  =  𝑏 ) | 
						
							| 66 | 64 65 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑎  ⨣  𝑏 ) ) | 
						
							| 67 |  | simpr | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( 𝐹 ‘ 𝑘 )  =  𝑐 ) | 
						
							| 68 | 66 67 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ 𝑗 ) )  ⨣  ( 𝐹 ‘ 𝑘 ) )  =  ( ( 𝑎  ⨣  𝑏 )  ⨣  𝑐 ) ) | 
						
							| 69 | 65 67 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( ( 𝐹 ‘ 𝑗 )  ⨣  ( 𝐹 ‘ 𝑘 ) )  =  ( 𝑏  ⨣  𝑐 ) ) | 
						
							| 70 | 64 69 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( ( 𝐹 ‘ 𝑗 )  ⨣  ( 𝐹 ‘ 𝑘 ) ) )  =  ( 𝑎  ⨣  ( 𝑏  ⨣  𝑐 ) ) ) | 
						
							| 71 | 63 68 70 | 3eqtr3d | ⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  ∧  𝑘  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑐 )  →  ( ( 𝑎  ⨣  𝑏 )  ⨣  𝑐 )  =  ( 𝑎  ⨣  ( 𝑏  ⨣  𝑐 ) ) ) | 
						
							| 72 |  | foelcdmi | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌  ∧  𝑐  ∈  𝑌 )  →  ∃ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  =  𝑐 ) | 
						
							| 73 | 6 72 | sylan | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝑌 )  →  ∃ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  =  𝑐 ) | 
						
							| 74 | 73 | 3ad2antr3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  →  ∃ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  =  𝑐 ) | 
						
							| 75 | 74 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  ∃ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  =  𝑐 ) | 
						
							| 76 | 71 75 | r19.29a | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑗  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  =  𝑏 )  →  ( ( 𝑎  ⨣  𝑏 )  ⨣  𝑐 )  =  ( 𝑎  ⨣  ( 𝑏  ⨣  𝑐 ) ) ) | 
						
							| 77 | 27 | 3adantr3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  →  ∃ 𝑗  ∈  𝑋 ( 𝐹 ‘ 𝑗 )  =  𝑏 ) | 
						
							| 78 | 77 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ∃ 𝑗  ∈  𝑋 ( 𝐹 ‘ 𝑗 )  =  𝑏 ) | 
						
							| 79 | 76 78 | r19.29a | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( ( 𝑎  ⨣  𝑏 )  ⨣  𝑐 )  =  ( 𝑎  ⨣  ( 𝑏  ⨣  𝑐 ) ) ) | 
						
							| 80 | 32 | 3adantr3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  →  ∃ 𝑖  ∈  𝑋 ( 𝐹 ‘ 𝑖 )  =  𝑎 ) | 
						
							| 81 | 79 80 | r19.29a | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌  ∧  𝑐  ∈  𝑌 ) )  →  ( ( 𝑎  ⨣  𝑏 )  ⨣  𝑐 )  =  ( 𝑎  ⨣  ( 𝑏  ⨣  𝑐 ) ) ) | 
						
							| 82 | 34 35 36 37 81 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  ∧  𝑐  ∈  𝑌 )  →  ( ( 𝑎  ⨣  𝑏 )  ⨣  𝑐 )  =  ( 𝑎  ⨣  ( 𝑏  ⨣  𝑐 ) ) ) | 
						
							| 83 | 82 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  →  ∀ 𝑐  ∈  𝑌 ( ( 𝑎  ⨣  𝑏 )  ⨣  𝑐 )  =  ( 𝑎  ⨣  ( 𝑏  ⨣  𝑐 ) ) ) | 
						
							| 84 | 33 83 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑌  ∧  𝑏  ∈  𝑌 ) )  →  ( ( 𝑎  ⨣  𝑏 )  ∈  𝑌  ∧  ∀ 𝑐  ∈  𝑌 ( ( 𝑎  ⨣  𝑏 )  ⨣  𝑐 )  =  ( 𝑎  ⨣  ( 𝑏  ⨣  𝑐 ) ) ) ) | 
						
							| 85 | 84 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑌 ∀ 𝑏  ∈  𝑌 ( ( 𝑎  ⨣  𝑏 )  ∈  𝑌  ∧  ∀ 𝑐  ∈  𝑌 ( ( 𝑎  ⨣  𝑏 )  ⨣  𝑐 )  =  ( 𝑎  ⨣  ( 𝑏  ⨣  𝑐 ) ) ) ) | 
						
							| 86 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 87 | 2 86 | mndidcl | ⊢ ( 𝐺  ∈  Mnd  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 88 | 7 87 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 89 | 17 88 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ∈  𝑌 ) | 
						
							| 90 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  𝜑 ) | 
						
							| 91 | 90 1 | syl3an1 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 92 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  𝐺  ∈  Mnd ) | 
						
							| 93 | 92 87 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 94 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  𝑖  ∈  𝑋 ) | 
						
							| 95 | 91 93 94 | mhmlem | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( 𝐹 ‘ ( ( 0g ‘ 𝐺 )  +  𝑖 ) )  =  ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ⨣  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 96 | 2 4 86 | mndlid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑖  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  𝑖 )  =  𝑖 ) | 
						
							| 97 | 92 94 96 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( ( 0g ‘ 𝐺 )  +  𝑖 )  =  𝑖 ) | 
						
							| 98 | 97 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( 𝐹 ‘ ( ( 0g ‘ 𝐺 )  +  𝑖 ) )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 99 | 95 98 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ⨣  ( 𝐹 ‘ 𝑖 ) )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 100 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( 𝐹 ‘ 𝑖 )  =  𝑎 ) | 
						
							| 101 | 100 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ⨣  ( 𝐹 ‘ 𝑖 ) )  =  ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ⨣  𝑎 ) ) | 
						
							| 102 | 99 101 100 | 3eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ⨣  𝑎 )  =  𝑎 ) | 
						
							| 103 | 91 94 93 | mhmlem | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( 𝐹 ‘ ( 𝑖  +  ( 0g ‘ 𝐺 ) ) )  =  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 104 | 2 4 86 | mndrid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑖  ∈  𝑋 )  →  ( 𝑖  +  ( 0g ‘ 𝐺 ) )  =  𝑖 ) | 
						
							| 105 | 92 94 104 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( 𝑖  +  ( 0g ‘ 𝐺 ) )  =  𝑖 ) | 
						
							| 106 | 105 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( 𝐹 ‘ ( 𝑖  +  ( 0g ‘ 𝐺 ) ) )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 107 | 103 106 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 108 | 100 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( ( 𝐹 ‘ 𝑖 )  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) )  =  ( 𝑎  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 109 | 107 108 100 | 3eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( 𝑎  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) )  =  𝑎 ) | 
						
							| 110 | 102 109 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑖 )  =  𝑎 )  →  ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ⨣  𝑎 )  =  𝑎  ∧  ( 𝑎  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) )  =  𝑎 ) ) | 
						
							| 111 | 6 31 | sylan | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  →  ∃ 𝑖  ∈  𝑋 ( 𝐹 ‘ 𝑖 )  =  𝑎 ) | 
						
							| 112 | 110 111 | r19.29a | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑌 )  →  ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ⨣  𝑎 )  =  𝑎  ∧  ( 𝑎  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) )  =  𝑎 ) ) | 
						
							| 113 | 112 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑌 ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ⨣  𝑎 )  =  𝑎  ∧  ( 𝑎  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) )  =  𝑎 ) ) | 
						
							| 114 |  | oveq1 | ⊢ ( 𝑑  =  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  →  ( 𝑑  ⨣  𝑎 )  =  ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ⨣  𝑎 ) ) | 
						
							| 115 | 114 | eqeq1d | ⊢ ( 𝑑  =  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  →  ( ( 𝑑  ⨣  𝑎 )  =  𝑎  ↔  ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ⨣  𝑎 )  =  𝑎 ) ) | 
						
							| 116 | 115 | ovanraleqv | ⊢ ( 𝑑  =  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  →  ( ∀ 𝑎  ∈  𝑌 ( ( 𝑑  ⨣  𝑎 )  =  𝑎  ∧  ( 𝑎  ⨣  𝑑 )  =  𝑎 )  ↔  ∀ 𝑎  ∈  𝑌 ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ⨣  𝑎 )  =  𝑎  ∧  ( 𝑎  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) )  =  𝑎 ) ) ) | 
						
							| 117 | 116 | rspcev | ⊢ ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ∈  𝑌  ∧  ∀ 𝑎  ∈  𝑌 ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  ⨣  𝑎 )  =  𝑎  ∧  ( 𝑎  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) )  =  𝑎 ) )  →  ∃ 𝑑  ∈  𝑌 ∀ 𝑎  ∈  𝑌 ( ( 𝑑  ⨣  𝑎 )  =  𝑎  ∧  ( 𝑎  ⨣  𝑑 )  =  𝑎 ) ) | 
						
							| 118 | 89 113 117 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑑  ∈  𝑌 ∀ 𝑎  ∈  𝑌 ( ( 𝑑  ⨣  𝑎 )  =  𝑎  ∧  ( 𝑎  ⨣  𝑑 )  =  𝑎 ) ) | 
						
							| 119 | 3 5 | ismnd | ⊢ ( 𝐻  ∈  Mnd  ↔  ( ∀ 𝑎  ∈  𝑌 ∀ 𝑏  ∈  𝑌 ( ( 𝑎  ⨣  𝑏 )  ∈  𝑌  ∧  ∀ 𝑐  ∈  𝑌 ( ( 𝑎  ⨣  𝑏 )  ⨣  𝑐 )  =  ( 𝑎  ⨣  ( 𝑏  ⨣  𝑐 ) ) )  ∧  ∃ 𝑑  ∈  𝑌 ∀ 𝑎  ∈  𝑌 ( ( 𝑑  ⨣  𝑎 )  =  𝑎  ∧  ( 𝑎  ⨣  𝑑 )  =  𝑎 ) ) ) | 
						
							| 120 | 85 118 119 | sylanbrc | ⊢ ( 𝜑  →  𝐻  ∈  Mnd ) |