| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmgrp.f | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 2 |  | ghmgrp.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | ghmgrp.y | ⊢ 𝑌  =  ( Base ‘ 𝐻 ) | 
						
							| 4 |  | ghmgrp.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 5 |  | ghmgrp.q | ⊢  ⨣   =  ( +g ‘ 𝐻 ) | 
						
							| 6 |  | ghmgrp.1 | ⊢ ( 𝜑  →  𝐹 : 𝑋 –onto→ 𝑌 ) | 
						
							| 7 |  | mhmmnd.3 | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 8 | 1 2 3 4 5 6 7 | mhmmnd | ⊢ ( 𝜑  →  𝐻  ∈  Mnd ) | 
						
							| 9 |  | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 10 | 6 9 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 11 | 1 | 3expb | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 12 | 11 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 14 | 1 2 3 4 5 6 7 13 | mhmid | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 15 | 10 12 14 | 3jca | ⊢ ( 𝜑  →  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐻 ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 17 | 2 3 4 5 13 16 | ismhm | ⊢ ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ↔  ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ⨣  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐻 ) ) ) ) | 
						
							| 18 | 7 8 15 17 | syl21anbrc | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐺  MndHom  𝐻 ) ) |