| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmgrp.f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 2 |
|
ghmgrp.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 3 |
|
ghmgrp.y |
⊢ 𝑌 = ( Base ‘ 𝐻 ) |
| 4 |
|
ghmgrp.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 5 |
|
ghmgrp.q |
⊢ ⨣ = ( +g ‘ 𝐻 ) |
| 6 |
|
ghmgrp.1 |
⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) |
| 7 |
|
mhmmnd.3 |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 8 |
1 2 3 4 5 6 7
|
mhmmnd |
⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
| 9 |
|
fof |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 11 |
1
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 |
11
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 14 |
1 2 3 4 5 6 7 13
|
mhmid |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
| 15 |
10 12 14
|
3jca |
⊢ ( 𝜑 → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
| 17 |
2 3 4 5 13 16
|
ismhm |
⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ↔ ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) ) ) |
| 18 |
7 8 15 17
|
syl21anbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ) |