Metamath Proof Explorer


Theorem mhmfmhm

Description: The function fulfilling the conditions of mhmmnd is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses ghmgrp.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
ghmgrp.x 𝑋 = ( Base ‘ 𝐺 )
ghmgrp.y 𝑌 = ( Base ‘ 𝐻 )
ghmgrp.p + = ( +g𝐺 )
ghmgrp.q = ( +g𝐻 )
ghmgrp.1 ( 𝜑𝐹 : 𝑋onto𝑌 )
mhmmnd.3 ( 𝜑𝐺 ∈ Mnd )
Assertion mhmfmhm ( 𝜑𝐹 ∈ ( 𝐺 MndHom 𝐻 ) )

Proof

Step Hyp Ref Expression
1 ghmgrp.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
2 ghmgrp.x 𝑋 = ( Base ‘ 𝐺 )
3 ghmgrp.y 𝑌 = ( Base ‘ 𝐻 )
4 ghmgrp.p + = ( +g𝐺 )
5 ghmgrp.q = ( +g𝐻 )
6 ghmgrp.1 ( 𝜑𝐹 : 𝑋onto𝑌 )
7 mhmmnd.3 ( 𝜑𝐺 ∈ Mnd )
8 1 2 3 4 5 6 7 mhmmnd ( 𝜑𝐻 ∈ Mnd )
9 fof ( 𝐹 : 𝑋onto𝑌𝐹 : 𝑋𝑌 )
10 6 9 syl ( 𝜑𝐹 : 𝑋𝑌 )
11 1 3expb ( ( 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
12 11 ralrimivva ( 𝜑 → ∀ 𝑥𝑋𝑦𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
13 eqid ( 0g𝐺 ) = ( 0g𝐺 )
14 1 2 3 4 5 6 7 13 mhmid ( 𝜑 → ( 𝐹 ‘ ( 0g𝐺 ) ) = ( 0g𝐻 ) )
15 10 12 14 3jca ( 𝜑 → ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g𝐺 ) ) = ( 0g𝐻 ) ) )
16 eqid ( 0g𝐻 ) = ( 0g𝐻 )
17 2 3 4 5 13 16 ismhm ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ↔ ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g𝐺 ) ) = ( 0g𝐻 ) ) ) )
18 7 8 15 17 syl21anbrc ( 𝜑𝐹 ∈ ( 𝐺 MndHom 𝐻 ) )