| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmgrp.f |
|- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 2 |
|
mhmlem.a |
|- ( ph -> A e. X ) |
| 3 |
|
mhmlem.b |
|- ( ph -> B e. X ) |
| 4 |
|
id |
|- ( ph -> ph ) |
| 5 |
|
eleq1 |
|- ( x = A -> ( x e. X <-> A e. X ) ) |
| 6 |
5
|
3anbi2d |
|- ( x = A -> ( ( ph /\ x e. X /\ y e. X ) <-> ( ph /\ A e. X /\ y e. X ) ) ) |
| 7 |
|
fvoveq1 |
|- ( x = A -> ( F ` ( x .+ y ) ) = ( F ` ( A .+ y ) ) ) |
| 8 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
| 9 |
8
|
oveq1d |
|- ( x = A -> ( ( F ` x ) .+^ ( F ` y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) ) |
| 10 |
7 9
|
eqeq12d |
|- ( x = A -> ( ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) <-> ( F ` ( A .+ y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) ) ) |
| 11 |
6 10
|
imbi12d |
|- ( x = A -> ( ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) <-> ( ( ph /\ A e. X /\ y e. X ) -> ( F ` ( A .+ y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) ) ) ) |
| 12 |
|
eleq1 |
|- ( y = B -> ( y e. X <-> B e. X ) ) |
| 13 |
12
|
3anbi3d |
|- ( y = B -> ( ( ph /\ A e. X /\ y e. X ) <-> ( ph /\ A e. X /\ B e. X ) ) ) |
| 14 |
|
oveq2 |
|- ( y = B -> ( A .+ y ) = ( A .+ B ) ) |
| 15 |
14
|
fveq2d |
|- ( y = B -> ( F ` ( A .+ y ) ) = ( F ` ( A .+ B ) ) ) |
| 16 |
|
fveq2 |
|- ( y = B -> ( F ` y ) = ( F ` B ) ) |
| 17 |
16
|
oveq2d |
|- ( y = B -> ( ( F ` A ) .+^ ( F ` y ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) |
| 18 |
15 17
|
eqeq12d |
|- ( y = B -> ( ( F ` ( A .+ y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) <-> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) ) |
| 19 |
13 18
|
imbi12d |
|- ( y = B -> ( ( ( ph /\ A e. X /\ y e. X ) -> ( F ` ( A .+ y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) ) <-> ( ( ph /\ A e. X /\ B e. X ) -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) ) ) |
| 20 |
11 19 1
|
vtocl2g |
|- ( ( A e. X /\ B e. X ) -> ( ( ph /\ A e. X /\ B e. X ) -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) ) |
| 21 |
2 3 20
|
syl2anc |
|- ( ph -> ( ( ph /\ A e. X /\ B e. X ) -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) ) |
| 22 |
4 2 3 21
|
mp3and |
|- ( ph -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) |