Metamath Proof Explorer


Theorem ghmima

Description: The image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion ghmima FSGrpHomTUSubGrpSFUSubGrpT

Proof

Step Hyp Ref Expression
1 df-ima FU=ranFU
2 eqid S𝑠U=S𝑠U
3 2 resghm FSGrpHomTUSubGrpSFUS𝑠UGrpHomT
4 ghmrn FUS𝑠UGrpHomTranFUSubGrpT
5 3 4 syl FSGrpHomTUSubGrpSranFUSubGrpT
6 1 5 eqeltrid FSGrpHomTUSubGrpSFUSubGrpT