Metamath Proof Explorer


Theorem ghmrn

Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion ghmrn F S GrpHom T ran F SubGrp T

Proof

Step Hyp Ref Expression
1 eqid Base S = Base S
2 eqid Base T = Base T
3 1 2 ghmf F S GrpHom T F : Base S Base T
4 3 frnd F S GrpHom T ran F Base T
5 3 fdmd F S GrpHom T dom F = Base S
6 ghmgrp1 F S GrpHom T S Grp
7 1 grpbn0 S Grp Base S
8 6 7 syl F S GrpHom T Base S
9 5 8 eqnetrd F S GrpHom T dom F
10 dm0rn0 dom F = ran F =
11 10 necon3bii dom F ran F
12 9 11 sylib F S GrpHom T ran F
13 eqid + S = + S
14 eqid + T = + T
15 1 13 14 ghmlin F S GrpHom T c Base S a Base S F c + S a = F c + T F a
16 3 ffnd F S GrpHom T F Fn Base S
17 16 3ad2ant1 F S GrpHom T c Base S a Base S F Fn Base S
18 1 13 grpcl S Grp c Base S a Base S c + S a Base S
19 6 18 syl3an1 F S GrpHom T c Base S a Base S c + S a Base S
20 fnfvelrn F Fn Base S c + S a Base S F c + S a ran F
21 17 19 20 syl2anc F S GrpHom T c Base S a Base S F c + S a ran F
22 15 21 eqeltrrd F S GrpHom T c Base S a Base S F c + T F a ran F
23 22 3expia F S GrpHom T c Base S a Base S F c + T F a ran F
24 23 ralrimiv F S GrpHom T c Base S a Base S F c + T F a ran F
25 oveq2 b = F a F c + T b = F c + T F a
26 25 eleq1d b = F a F c + T b ran F F c + T F a ran F
27 26 ralrn F Fn Base S b ran F F c + T b ran F a Base S F c + T F a ran F
28 16 27 syl F S GrpHom T b ran F F c + T b ran F a Base S F c + T F a ran F
29 28 adantr F S GrpHom T c Base S b ran F F c + T b ran F a Base S F c + T F a ran F
30 24 29 mpbird F S GrpHom T c Base S b ran F F c + T b ran F
31 eqid inv g S = inv g S
32 eqid inv g T = inv g T
33 1 31 32 ghminv F S GrpHom T c Base S F inv g S c = inv g T F c
34 16 adantr F S GrpHom T c Base S F Fn Base S
35 1 31 grpinvcl S Grp c Base S inv g S c Base S
36 6 35 sylan F S GrpHom T c Base S inv g S c Base S
37 fnfvelrn F Fn Base S inv g S c Base S F inv g S c ran F
38 34 36 37 syl2anc F S GrpHom T c Base S F inv g S c ran F
39 33 38 eqeltrrd F S GrpHom T c Base S inv g T F c ran F
40 30 39 jca F S GrpHom T c Base S b ran F F c + T b ran F inv g T F c ran F
41 40 ralrimiva F S GrpHom T c Base S b ran F F c + T b ran F inv g T F c ran F
42 oveq1 a = F c a + T b = F c + T b
43 42 eleq1d a = F c a + T b ran F F c + T b ran F
44 43 ralbidv a = F c b ran F a + T b ran F b ran F F c + T b ran F
45 fveq2 a = F c inv g T a = inv g T F c
46 45 eleq1d a = F c inv g T a ran F inv g T F c ran F
47 44 46 anbi12d a = F c b ran F a + T b ran F inv g T a ran F b ran F F c + T b ran F inv g T F c ran F
48 47 ralrn F Fn Base S a ran F b ran F a + T b ran F inv g T a ran F c Base S b ran F F c + T b ran F inv g T F c ran F
49 16 48 syl F S GrpHom T a ran F b ran F a + T b ran F inv g T a ran F c Base S b ran F F c + T b ran F inv g T F c ran F
50 41 49 mpbird F S GrpHom T a ran F b ran F a + T b ran F inv g T a ran F
51 ghmgrp2 F S GrpHom T T Grp
52 2 14 32 issubg2 T Grp ran F SubGrp T ran F Base T ran F a ran F b ran F a + T b ran F inv g T a ran F
53 51 52 syl F S GrpHom T ran F SubGrp T ran F Base T ran F a ran F b ran F a + T b ran F inv g T a ran F
54 4 12 50 53 mpbir3and F S GrpHom T ran F SubGrp T