Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ghmrn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | ghmf | |
4 | 3 | frnd | |
5 | 3 | fdmd | |
6 | ghmgrp1 | |
|
7 | 1 | grpbn0 | |
8 | 6 7 | syl | |
9 | 5 8 | eqnetrd | |
10 | dm0rn0 | |
|
11 | 10 | necon3bii | |
12 | 9 11 | sylib | |
13 | eqid | |
|
14 | eqid | |
|
15 | 1 13 14 | ghmlin | |
16 | 3 | ffnd | |
17 | 16 | 3ad2ant1 | |
18 | 1 13 | grpcl | |
19 | 6 18 | syl3an1 | |
20 | fnfvelrn | |
|
21 | 17 19 20 | syl2anc | |
22 | 15 21 | eqeltrrd | |
23 | 22 | 3expia | |
24 | 23 | ralrimiv | |
25 | oveq2 | |
|
26 | 25 | eleq1d | |
27 | 26 | ralrn | |
28 | 16 27 | syl | |
29 | 28 | adantr | |
30 | 24 29 | mpbird | |
31 | eqid | |
|
32 | eqid | |
|
33 | 1 31 32 | ghminv | |
34 | 16 | adantr | |
35 | 1 31 | grpinvcl | |
36 | 6 35 | sylan | |
37 | fnfvelrn | |
|
38 | 34 36 37 | syl2anc | |
39 | 33 38 | eqeltrrd | |
40 | 30 39 | jca | |
41 | 40 | ralrimiva | |
42 | oveq1 | |
|
43 | 42 | eleq1d | |
44 | 43 | ralbidv | |
45 | fveq2 | |
|
46 | 45 | eleq1d | |
47 | 44 46 | anbi12d | |
48 | 47 | ralrn | |
49 | 16 48 | syl | |
50 | 41 49 | mpbird | |
51 | ghmgrp2 | |
|
52 | 2 14 32 | issubg2 | |
53 | 51 52 | syl | |
54 | 4 12 50 53 | mpbir3and | |