Metamath Proof Explorer


Theorem ghmrn

Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion ghmrn FSGrpHomTranFSubGrpT

Proof

Step Hyp Ref Expression
1 eqid BaseS=BaseS
2 eqid BaseT=BaseT
3 1 2 ghmf FSGrpHomTF:BaseSBaseT
4 3 frnd FSGrpHomTranFBaseT
5 3 fdmd FSGrpHomTdomF=BaseS
6 ghmgrp1 FSGrpHomTSGrp
7 1 grpbn0 SGrpBaseS
8 6 7 syl FSGrpHomTBaseS
9 5 8 eqnetrd FSGrpHomTdomF
10 dm0rn0 domF=ranF=
11 10 necon3bii domFranF
12 9 11 sylib FSGrpHomTranF
13 eqid +S=+S
14 eqid +T=+T
15 1 13 14 ghmlin FSGrpHomTcBaseSaBaseSFc+Sa=Fc+TFa
16 3 ffnd FSGrpHomTFFnBaseS
17 16 3ad2ant1 FSGrpHomTcBaseSaBaseSFFnBaseS
18 1 13 grpcl SGrpcBaseSaBaseSc+SaBaseS
19 6 18 syl3an1 FSGrpHomTcBaseSaBaseSc+SaBaseS
20 fnfvelrn FFnBaseSc+SaBaseSFc+SaranF
21 17 19 20 syl2anc FSGrpHomTcBaseSaBaseSFc+SaranF
22 15 21 eqeltrrd FSGrpHomTcBaseSaBaseSFc+TFaranF
23 22 3expia FSGrpHomTcBaseSaBaseSFc+TFaranF
24 23 ralrimiv FSGrpHomTcBaseSaBaseSFc+TFaranF
25 oveq2 b=FaFc+Tb=Fc+TFa
26 25 eleq1d b=FaFc+TbranFFc+TFaranF
27 26 ralrn FFnBaseSbranFFc+TbranFaBaseSFc+TFaranF
28 16 27 syl FSGrpHomTbranFFc+TbranFaBaseSFc+TFaranF
29 28 adantr FSGrpHomTcBaseSbranFFc+TbranFaBaseSFc+TFaranF
30 24 29 mpbird FSGrpHomTcBaseSbranFFc+TbranF
31 eqid invgS=invgS
32 eqid invgT=invgT
33 1 31 32 ghminv FSGrpHomTcBaseSFinvgSc=invgTFc
34 16 adantr FSGrpHomTcBaseSFFnBaseS
35 1 31 grpinvcl SGrpcBaseSinvgScBaseS
36 6 35 sylan FSGrpHomTcBaseSinvgScBaseS
37 fnfvelrn FFnBaseSinvgScBaseSFinvgScranF
38 34 36 37 syl2anc FSGrpHomTcBaseSFinvgScranF
39 33 38 eqeltrrd FSGrpHomTcBaseSinvgTFcranF
40 30 39 jca FSGrpHomTcBaseSbranFFc+TbranFinvgTFcranF
41 40 ralrimiva FSGrpHomTcBaseSbranFFc+TbranFinvgTFcranF
42 oveq1 a=Fca+Tb=Fc+Tb
43 42 eleq1d a=Fca+TbranFFc+TbranF
44 43 ralbidv a=FcbranFa+TbranFbranFFc+TbranF
45 fveq2 a=FcinvgTa=invgTFc
46 45 eleq1d a=FcinvgTaranFinvgTFcranF
47 44 46 anbi12d a=FcbranFa+TbranFinvgTaranFbranFFc+TbranFinvgTFcranF
48 47 ralrn FFnBaseSaranFbranFa+TbranFinvgTaranFcBaseSbranFFc+TbranFinvgTFcranF
49 16 48 syl FSGrpHomTaranFbranFa+TbranFinvgTaranFcBaseSbranFFc+TbranFinvgTFcranF
50 41 49 mpbird FSGrpHomTaranFbranFa+TbranFinvgTaranF
51 ghmgrp2 FSGrpHomTTGrp
52 2 14 32 issubg2 TGrpranFSubGrpTranFBaseTranFaranFbranFa+TbranFinvgTaranF
53 51 52 syl FSGrpHomTranFSubGrpTranFBaseTranFaranFbranFa+TbranFinvgTaranF
54 4 12 50 53 mpbir3and FSGrpHomTranFSubGrpT