| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resghm.u |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
1
|
subggrp |
|
| 7 |
6
|
adantl |
|
| 8 |
|
ghmgrp2 |
|
| 9 |
8
|
adantr |
|
| 10 |
|
eqid |
|
| 11 |
10 3
|
ghmf |
|
| 12 |
10
|
subgss |
|
| 13 |
|
fssres |
|
| 14 |
11 12 13
|
syl2an |
|
| 15 |
12
|
adantl |
|
| 16 |
1 10
|
ressbas2 |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
feq2d |
|
| 19 |
14 18
|
mpbid |
|
| 20 |
|
eleq2 |
|
| 21 |
|
eleq2 |
|
| 22 |
20 21
|
anbi12d |
|
| 23 |
17 22
|
syl |
|
| 24 |
23
|
biimpar |
|
| 25 |
|
simpll |
|
| 26 |
15
|
sselda |
|
| 27 |
26
|
adantrr |
|
| 28 |
15
|
sselda |
|
| 29 |
28
|
adantrl |
|
| 30 |
|
eqid |
|
| 31 |
10 30 5
|
ghmlin |
|
| 32 |
25 27 29 31
|
syl3anc |
|
| 33 |
1 30
|
ressplusg |
|
| 34 |
33
|
ad2antlr |
|
| 35 |
34
|
oveqd |
|
| 36 |
35
|
fveq2d |
|
| 37 |
30
|
subgcl |
|
| 38 |
37
|
3expb |
|
| 39 |
38
|
adantll |
|
| 40 |
39
|
fvresd |
|
| 41 |
36 40
|
eqtr3d |
|
| 42 |
|
fvres |
|
| 43 |
|
fvres |
|
| 44 |
42 43
|
oveqan12d |
|
| 45 |
44
|
adantl |
|
| 46 |
32 41 45
|
3eqtr4d |
|
| 47 |
24 46
|
syldan |
|
| 48 |
2 3 4 5 7 9 19 47
|
isghmd |
|