Metamath Proof Explorer


Theorem ghmker

Description: The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis ghmker.1 0˙=0T
Assertion ghmker FSGrpHomTF-10˙NrmSGrpS

Proof

Step Hyp Ref Expression
1 ghmker.1 0˙=0T
2 ghmgrp2 FSGrpHomTTGrp
3 1 0nsg TGrp0˙NrmSGrpT
4 2 3 syl FSGrpHomT0˙NrmSGrpT
5 ghmnsgpreima FSGrpHomT0˙NrmSGrpTF-10˙NrmSGrpS
6 4 5 mpdan FSGrpHomTF-10˙NrmSGrpS