Metamath Proof Explorer


Theorem ghmeqker

Description: Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmeqker.b B = Base S
ghmeqker.z 0 ˙ = 0 T
ghmeqker.k K = F -1 0 ˙
ghmeqker.m - ˙ = - S
Assertion ghmeqker F S GrpHom T U B V B F U = F V U - ˙ V K

Proof

Step Hyp Ref Expression
1 ghmeqker.b B = Base S
2 ghmeqker.z 0 ˙ = 0 T
3 ghmeqker.k K = F -1 0 ˙
4 ghmeqker.m - ˙ = - S
5 2 sneqi 0 ˙ = 0 T
6 5 imaeq2i F -1 0 ˙ = F -1 0 T
7 3 6 eqtri K = F -1 0 T
8 7 eleq2i U - ˙ V K U - ˙ V F -1 0 T
9 eqid Base T = Base T
10 1 9 ghmf F S GrpHom T F : B Base T
11 10 ffnd F S GrpHom T F Fn B
12 11 3ad2ant1 F S GrpHom T U B V B F Fn B
13 fniniseg F Fn B U - ˙ V F -1 0 T U - ˙ V B F U - ˙ V = 0 T
14 12 13 syl F S GrpHom T U B V B U - ˙ V F -1 0 T U - ˙ V B F U - ˙ V = 0 T
15 8 14 syl5bb F S GrpHom T U B V B U - ˙ V K U - ˙ V B F U - ˙ V = 0 T
16 ghmgrp1 F S GrpHom T S Grp
17 1 4 grpsubcl S Grp U B V B U - ˙ V B
18 16 17 syl3an1 F S GrpHom T U B V B U - ˙ V B
19 18 biantrurd F S GrpHom T U B V B F U - ˙ V = 0 T U - ˙ V B F U - ˙ V = 0 T
20 eqid - T = - T
21 1 4 20 ghmsub F S GrpHom T U B V B F U - ˙ V = F U - T F V
22 21 eqeq1d F S GrpHom T U B V B F U - ˙ V = 0 T F U - T F V = 0 T
23 19 22 bitr3d F S GrpHom T U B V B U - ˙ V B F U - ˙ V = 0 T F U - T F V = 0 T
24 ghmgrp2 F S GrpHom T T Grp
25 24 3ad2ant1 F S GrpHom T U B V B T Grp
26 10 3ad2ant1 F S GrpHom T U B V B F : B Base T
27 simp2 F S GrpHom T U B V B U B
28 26 27 ffvelrnd F S GrpHom T U B V B F U Base T
29 simp3 F S GrpHom T U B V B V B
30 26 29 ffvelrnd F S GrpHom T U B V B F V Base T
31 eqid 0 T = 0 T
32 9 31 20 grpsubeq0 T Grp F U Base T F V Base T F U - T F V = 0 T F U = F V
33 25 28 30 32 syl3anc F S GrpHom T U B V B F U - T F V = 0 T F U = F V
34 15 23 33 3bitrrd F S GrpHom T U B V B F U = F V U - ˙ V K