Metamath Proof Explorer


Theorem ghmeqker

Description: Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmeqker.b B=BaseS
ghmeqker.z 0˙=0T
ghmeqker.k K=F-10˙
ghmeqker.m -˙=-S
Assertion ghmeqker FSGrpHomTUBVBFU=FVU-˙VK

Proof

Step Hyp Ref Expression
1 ghmeqker.b B=BaseS
2 ghmeqker.z 0˙=0T
3 ghmeqker.k K=F-10˙
4 ghmeqker.m -˙=-S
5 2 sneqi 0˙=0T
6 5 imaeq2i F-10˙=F-10T
7 3 6 eqtri K=F-10T
8 7 eleq2i U-˙VKU-˙VF-10T
9 eqid BaseT=BaseT
10 1 9 ghmf FSGrpHomTF:BBaseT
11 10 ffnd FSGrpHomTFFnB
12 11 3ad2ant1 FSGrpHomTUBVBFFnB
13 fniniseg FFnBU-˙VF-10TU-˙VBFU-˙V=0T
14 12 13 syl FSGrpHomTUBVBU-˙VF-10TU-˙VBFU-˙V=0T
15 8 14 bitrid FSGrpHomTUBVBU-˙VKU-˙VBFU-˙V=0T
16 ghmgrp1 FSGrpHomTSGrp
17 1 4 grpsubcl SGrpUBVBU-˙VB
18 16 17 syl3an1 FSGrpHomTUBVBU-˙VB
19 18 biantrurd FSGrpHomTUBVBFU-˙V=0TU-˙VBFU-˙V=0T
20 eqid -T=-T
21 1 4 20 ghmsub FSGrpHomTUBVBFU-˙V=FU-TFV
22 21 eqeq1d FSGrpHomTUBVBFU-˙V=0TFU-TFV=0T
23 19 22 bitr3d FSGrpHomTUBVBU-˙VBFU-˙V=0TFU-TFV=0T
24 ghmgrp2 FSGrpHomTTGrp
25 24 3ad2ant1 FSGrpHomTUBVBTGrp
26 10 3ad2ant1 FSGrpHomTUBVBF:BBaseT
27 simp2 FSGrpHomTUBVBUB
28 26 27 ffvelcdmd FSGrpHomTUBVBFUBaseT
29 simp3 FSGrpHomTUBVBVB
30 26 29 ffvelcdmd FSGrpHomTUBVBFVBaseT
31 eqid 0T=0T
32 9 31 20 grpsubeq0 TGrpFUBaseTFVBaseTFU-TFV=0TFU=FV
33 25 28 30 32 syl3anc FSGrpHomTUBVBFU-TFV=0TFU=FV
34 15 23 33 3bitrrd FSGrpHomTUBVBFU=FVU-˙VK