Metamath Proof Explorer
		
		
		
		Description:  An isomorphism of groups is a bijection.  (Contributed by Stefan O'Rear, 21-Jan-2015)  (Revised by Mario Carneiro, 6-May-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | isgim.b |  | 
					
						|  |  | isgim.c |  | 
				
					|  | Assertion | gimf1o |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgim.b |  | 
						
							| 2 |  | isgim.c |  | 
						
							| 3 | 1 2 | isgim |  | 
						
							| 4 | 3 | simprbi |  |