Metamath Proof Explorer


Theorem glbelss

Description: A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbs.b B=BaseK
glbs.l ˙=K
glbs.g G=glbK
glbs.k φKV
glbs.s φSdomG
Assertion glbelss φSB

Proof

Step Hyp Ref Expression
1 glbs.b B=BaseK
2 glbs.l ˙=K
3 glbs.g G=glbK
4 glbs.k φKV
5 glbs.s φSdomG
6 biid ySx˙yzBySz˙yz˙xySx˙yzBySz˙yz˙x
7 1 2 3 6 4 glbeldm φSdomGSB∃!xBySx˙yzBySz˙yz˙x
8 5 7 mpbid φSB∃!xBySx˙yzBySz˙yz˙x
9 8 simpld φSB