Metamath Proof Explorer


Theorem grlicen

Description: Locally isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 11-Jun-2025)

Ref Expression
Hypotheses grlicen.b B = Vtx R
grlicen.c C = Vtx S
Assertion grlicen R 𝑙𝑔𝑟 S B C

Proof

Step Hyp Ref Expression
1 grlicen.b B = Vtx R
2 grlicen.c C = Vtx S
3 brgrlic R 𝑙𝑔𝑟 S R GraphLocIso S
4 n0 R GraphLocIso S f f R GraphLocIso S
5 1 2 grlimf1o f R GraphLocIso S f : B 1-1 onto C
6 1 fvexi B V
7 6 f1oen f : B 1-1 onto C B C
8 5 7 syl f R GraphLocIso S B C
9 8 exlimiv f f R GraphLocIso S B C
10 4 9 sylbi R GraphLocIso S B C
11 3 10 sylbi R 𝑙𝑔𝑟 S B C