Metamath Proof Explorer


Theorem gricgrlic

Description: Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025) (Proof shortened by AV, 11-Jul-2025)

Ref Expression
Assertion gricgrlic G UHGraph H UHGraph G 𝑔𝑟 H G 𝑙𝑔𝑟 H

Proof

Step Hyp Ref Expression
1 brgric G 𝑔𝑟 H G GraphIso H
2 n0 G GraphIso H i i G GraphIso H
3 uhgrimgrlim G UHGraph H UHGraph i G GraphIso H i G GraphLocIso H
4 brgrilci i G GraphLocIso H G 𝑙𝑔𝑟 H
5 3 4 syl G UHGraph H UHGraph i G GraphIso H G 𝑙𝑔𝑟 H
6 5 3expa G UHGraph H UHGraph i G GraphIso H G 𝑙𝑔𝑟 H
7 6 expcom i G GraphIso H G UHGraph H UHGraph G 𝑙𝑔𝑟 H
8 7 exlimiv i i G GraphIso H G UHGraph H UHGraph G 𝑙𝑔𝑟 H
9 2 8 sylbi G GraphIso H G UHGraph H UHGraph G 𝑙𝑔𝑟 H
10 1 9 sylbi G 𝑔𝑟 H G UHGraph H UHGraph G 𝑙𝑔𝑟 H
11 10 com12 G UHGraph H UHGraph G 𝑔𝑟 H G 𝑙𝑔𝑟 H