Step |
Hyp |
Ref |
Expression |
1 |
|
brgric |
⊢ ( 𝐺 ≃𝑔𝑟 𝐻 ↔ ( 𝐺 GraphIso 𝐻 ) ≠ ∅ ) |
2 |
|
n0 |
⊢ ( ( 𝐺 GraphIso 𝐻 ) ≠ ∅ ↔ ∃ 𝑖 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
3 |
|
uhgrimgrlim |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝑖 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |
4 |
|
brgrilci |
⊢ ( 𝑖 ∈ ( 𝐺 GraphLocIso 𝐻 ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) |
6 |
5
|
3expa |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) |
7 |
6
|
expcom |
⊢ ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
8 |
7
|
exlimiv |
⊢ ( ∃ 𝑖 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
9 |
2 8
|
sylbi |
⊢ ( ( 𝐺 GraphIso 𝐻 ) ≠ ∅ → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
10 |
1 9
|
sylbi |
⊢ ( 𝐺 ≃𝑔𝑟 𝐻 → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
11 |
10
|
com12 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |