Description: Prove that two graphs are locally isomorphic by an explicit local isomorphism. (Contributed by AV, 9-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | brgrilci | ⊢ ( 𝐹 ∈ ( 𝑅 GraphLocIso 𝑆 ) → 𝑅 ≃𝑙𝑔𝑟 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i | ⊢ ( 𝐹 ∈ ( 𝑅 GraphLocIso 𝑆 ) → ( 𝑅 GraphLocIso 𝑆 ) ≠ ∅ ) | |
2 | brgrlic | ⊢ ( 𝑅 ≃𝑙𝑔𝑟 𝑆 ↔ ( 𝑅 GraphLocIso 𝑆 ) ≠ ∅ ) | |
3 | 1 2 | sylibr | ⊢ ( 𝐹 ∈ ( 𝑅 GraphLocIso 𝑆 ) → 𝑅 ≃𝑙𝑔𝑟 𝑆 ) |