Description: Prove that two graphs are locally isomorphic by an explicit local isomorphism. (Contributed by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brgrilci | |- ( F e. ( R GraphLocIso S ) -> R ~=lgr S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | |- ( F e. ( R GraphLocIso S ) -> ( R GraphLocIso S ) =/= (/) ) |
|
| 2 | brgrlic | |- ( R ~=lgr S <-> ( R GraphLocIso S ) =/= (/) ) |
|
| 3 | 1 2 | sylibr | |- ( F e. ( R GraphLocIso S ) -> R ~=lgr S ) |