Description: Prove that two graphs are locally isomorphic by an explicit local isomorphism. (Contributed by AV, 9-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | brgrilci | |- ( F e. ( R GraphLocIso S ) -> R ~=lgr S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i | |- ( F e. ( R GraphLocIso S ) -> ( R GraphLocIso S ) =/= (/) ) |
|
2 | brgrlic | |- ( R ~=lgr S <-> ( R GraphLocIso S ) =/= (/) ) |
|
3 | 1 2 | sylibr | |- ( F e. ( R GraphLocIso S ) -> R ~=lgr S ) |