Metamath Proof Explorer


Theorem grlicrel

Description: The "is locally isomorphic to" relation for graphs is a relation. (Contributed by AV, 9-Jun-2025)

Ref Expression
Assertion grlicrel
|- Rel ~=lgr

Proof

Step Hyp Ref Expression
1 df-grlic
 |-  ~=lgr = ( `' GraphLocIso " ( _V \ 1o ) )
2 cnvimass
 |-  ( `' GraphLocIso " ( _V \ 1o ) ) C_ dom GraphLocIso
3 grlimfn
 |-  GraphLocIso Fn ( _V X. _V )
4 3 fndmi
 |-  dom GraphLocIso = ( _V X. _V )
5 2 4 sseqtri
 |-  ( `' GraphLocIso " ( _V \ 1o ) ) C_ ( _V X. _V )
6 1 5 eqsstri
 |-  ~=lgr C_ ( _V X. _V )
7 relxp
 |-  Rel ( _V X. _V )
8 relss
 |-  ( ~=lgr C_ ( _V X. _V ) -> ( Rel ( _V X. _V ) -> Rel ~=lgr ) )
9 6 7 8 mp2
 |-  Rel ~=lgr