Metamath Proof Explorer


Theorem grlicrel

Description: The "is locally isomorphic to" relation for graphs is a relation. (Contributed by AV, 9-Jun-2025)

Ref Expression
Assertion grlicrel Rel 𝑙𝑔𝑟

Proof

Step Hyp Ref Expression
1 df-grlic 𝑙𝑔𝑟 = GraphLocIso -1 V 1 𝑜
2 cnvimass GraphLocIso -1 V 1 𝑜 dom GraphLocIso
3 grlimfn GraphLocIso Fn V × V
4 3 fndmi dom GraphLocIso = V × V
5 2 4 sseqtri GraphLocIso -1 V 1 𝑜 V × V
6 1 5 eqsstri 𝑙𝑔𝑟 V × V
7 relxp Rel V × V
8 relss 𝑙𝑔𝑟 V × V Rel V × V Rel 𝑙𝑔𝑟
9 6 7 8 mp2 Rel 𝑙𝑔𝑟