Metamath Proof Explorer


Theorem grlicrel

Description: The "is locally isomorphic to" relation for graphs is a relation. (Contributed by AV, 9-Jun-2025)

Ref Expression
Assertion grlicrel Rel ≃𝑙𝑔𝑟

Proof

Step Hyp Ref Expression
1 df-grlic 𝑙𝑔𝑟 = ( GraphLocIso “ ( V ∖ 1o ) )
2 cnvimass ( GraphLocIso “ ( V ∖ 1o ) ) ⊆ dom GraphLocIso
3 grlimfn GraphLocIso Fn ( V × V )
4 3 fndmi dom GraphLocIso = ( V × V )
5 2 4 sseqtri ( GraphLocIso “ ( V ∖ 1o ) ) ⊆ ( V × V )
6 1 5 eqsstri 𝑙𝑔𝑟 ⊆ ( V × V )
7 relxp Rel ( V × V )
8 relss ( ≃𝑙𝑔𝑟 ⊆ ( V × V ) → ( Rel ( V × V ) → Rel ≃𝑙𝑔𝑟 ) )
9 6 7 8 mp2 Rel ≃𝑙𝑔𝑟