| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brgric |
|- ( G ~=gr H <-> ( G GraphIso H ) =/= (/) ) |
| 2 |
|
n0 |
|- ( ( G GraphIso H ) =/= (/) <-> E. i i e. ( G GraphIso H ) ) |
| 3 |
|
uhgrimgrlim |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ i e. ( G GraphIso H ) ) -> i e. ( G GraphLocIso H ) ) |
| 4 |
|
brgrilci |
|- ( i e. ( G GraphLocIso H ) -> G ~=lgr H ) |
| 5 |
3 4
|
syl |
|- ( ( G e. UHGraph /\ H e. UHGraph /\ i e. ( G GraphIso H ) ) -> G ~=lgr H ) |
| 6 |
5
|
3expa |
|- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ i e. ( G GraphIso H ) ) -> G ~=lgr H ) |
| 7 |
6
|
expcom |
|- ( i e. ( G GraphIso H ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> G ~=lgr H ) ) |
| 8 |
7
|
exlimiv |
|- ( E. i i e. ( G GraphIso H ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> G ~=lgr H ) ) |
| 9 |
2 8
|
sylbi |
|- ( ( G GraphIso H ) =/= (/) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> G ~=lgr H ) ) |
| 10 |
1 9
|
sylbi |
|- ( G ~=gr H -> ( ( G e. UHGraph /\ H e. UHGraph ) -> G ~=lgr H ) ) |
| 11 |
10
|
com12 |
|- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( G ~=gr H -> G ~=lgr H ) ) |