Metamath Proof Explorer


Theorem grlicen

Description: Locally isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 11-Jun-2025)

Ref Expression
Hypotheses grlicen.b 𝐵 = ( Vtx ‘ 𝑅 )
grlicen.c 𝐶 = ( Vtx ‘ 𝑆 )
Assertion grlicen ( 𝑅𝑙𝑔𝑟 𝑆𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 grlicen.b 𝐵 = ( Vtx ‘ 𝑅 )
2 grlicen.c 𝐶 = ( Vtx ‘ 𝑆 )
3 brgrlic ( 𝑅𝑙𝑔𝑟 𝑆 ↔ ( 𝑅 GraphLocIso 𝑆 ) ≠ ∅ )
4 n0 ( ( 𝑅 GraphLocIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 GraphLocIso 𝑆 ) )
5 1 2 grlimf1o ( 𝑓 ∈ ( 𝑅 GraphLocIso 𝑆 ) → 𝑓 : 𝐵1-1-onto𝐶 )
6 1 fvexi 𝐵 ∈ V
7 6 f1oen ( 𝑓 : 𝐵1-1-onto𝐶𝐵𝐶 )
8 5 7 syl ( 𝑓 ∈ ( 𝑅 GraphLocIso 𝑆 ) → 𝐵𝐶 )
9 8 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝑅 GraphLocIso 𝑆 ) → 𝐵𝐶 )
10 4 9 sylbi ( ( 𝑅 GraphLocIso 𝑆 ) ≠ ∅ → 𝐵𝐶 )
11 3 10 sylbi ( 𝑅𝑙𝑔𝑟 𝑆𝐵𝐶 )