Step |
Hyp |
Ref |
Expression |
1 |
|
grlicen.b |
⊢ 𝐵 = ( Vtx ‘ 𝑅 ) |
2 |
|
grlicen.c |
⊢ 𝐶 = ( Vtx ‘ 𝑆 ) |
3 |
|
brgrlic |
⊢ ( 𝑅 ≃𝑙𝑔𝑟 𝑆 ↔ ( 𝑅 GraphLocIso 𝑆 ) ≠ ∅ ) |
4 |
|
n0 |
⊢ ( ( 𝑅 GraphLocIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 GraphLocIso 𝑆 ) ) |
5 |
1 2
|
grlimf1o |
⊢ ( 𝑓 ∈ ( 𝑅 GraphLocIso 𝑆 ) → 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) |
6 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
7 |
6
|
f1oen |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 → 𝐵 ≈ 𝐶 ) |
8 |
5 7
|
syl |
⊢ ( 𝑓 ∈ ( 𝑅 GraphLocIso 𝑆 ) → 𝐵 ≈ 𝐶 ) |
9 |
8
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 GraphLocIso 𝑆 ) → 𝐵 ≈ 𝐶 ) |
10 |
4 9
|
sylbi |
⊢ ( ( 𝑅 GraphLocIso 𝑆 ) ≠ ∅ → 𝐵 ≈ 𝐶 ) |
11 |
3 10
|
sylbi |
⊢ ( 𝑅 ≃𝑙𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶 ) |