Metamath Proof Explorer


Theorem grpcl

Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011)

Ref Expression
Hypotheses grpcl.b B=BaseG
grpcl.p +˙=+G
Assertion grpcl GGrpXBYBX+˙YB

Proof

Step Hyp Ref Expression
1 grpcl.b B=BaseG
2 grpcl.p +˙=+G
3 grpmnd GGrpGMnd
4 1 2 mndcl GMndXBYBX+˙YB
5 3 4 syl3an1 GGrpXBYBX+˙YB