Metamath Proof Explorer


Theorem grpinvinvd

Description: Double inverse law for groups. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses grpinvinvd.1 B = Base G
grpinvinvd.2 N = inv g G
grpinvinvd.3 φ G Grp
grpinvinvd.4 φ X B
Assertion grpinvinvd φ N N X = X

Proof

Step Hyp Ref Expression
1 grpinvinvd.1 B = Base G
2 grpinvinvd.2 N = inv g G
3 grpinvinvd.3 φ G Grp
4 grpinvinvd.4 φ X B
5 1 2 grpinvinv G Grp X B N N X = X
6 3 4 5 syl2anc φ N N X = X