Metamath Proof Explorer
Description: Double inverse law for groups. (Contributed by Thierry Arnoux, 15-Feb-2026)
|
|
Ref |
Expression |
|
Hypotheses |
grpinvinvd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
grpinvinvd.2 |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
|
|
grpinvinvd.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
|
|
grpinvinvd.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
Assertion |
grpinvinvd |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvinvd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grpinvinvd.2 |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
| 3 |
|
grpinvinvd.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 4 |
|
grpinvinvd.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
1 2
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 6 |
3 4 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |