Metamath Proof Explorer


Theorem grpinvinvd

Description: Double inverse law for groups. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses grpinvinvd.1 𝐵 = ( Base ‘ 𝐺 )
grpinvinvd.2 𝑁 = ( invg𝐺 )
grpinvinvd.3 ( 𝜑𝐺 ∈ Grp )
grpinvinvd.4 ( 𝜑𝑋𝐵 )
Assertion grpinvinvd ( 𝜑 → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 grpinvinvd.1 𝐵 = ( Base ‘ 𝐺 )
2 grpinvinvd.2 𝑁 = ( invg𝐺 )
3 grpinvinvd.3 ( 𝜑𝐺 ∈ Grp )
4 grpinvinvd.4 ( 𝜑𝑋𝐵 )
5 1 2 grpinvinv ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )
6 3 4 5 syl2anc ( 𝜑 → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )