Description: Double inverse law for groups. (Contributed by Thierry Arnoux, 15-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvinvd.1 | |- B = ( Base ` G ) |
|
| grpinvinvd.2 | |- N = ( invg ` G ) |
||
| grpinvinvd.3 | |- ( ph -> G e. Grp ) |
||
| grpinvinvd.4 | |- ( ph -> X e. B ) |
||
| Assertion | grpinvinvd | |- ( ph -> ( N ` ( N ` X ) ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinvd.1 | |- B = ( Base ` G ) |
|
| 2 | grpinvinvd.2 | |- N = ( invg ` G ) |
|
| 3 | grpinvinvd.3 | |- ( ph -> G e. Grp ) |
|
| 4 | grpinvinvd.4 | |- ( ph -> X e. B ) |
|
| 5 | 1 2 | grpinvinv | |- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |
| 6 | 3 4 5 | syl2anc | |- ( ph -> ( N ` ( N ` X ) ) = X ) |