Metamath Proof Explorer


Theorem grpinvinvd

Description: Double inverse law for groups. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses grpinvinvd.1
|- B = ( Base ` G )
grpinvinvd.2
|- N = ( invg ` G )
grpinvinvd.3
|- ( ph -> G e. Grp )
grpinvinvd.4
|- ( ph -> X e. B )
Assertion grpinvinvd
|- ( ph -> ( N ` ( N ` X ) ) = X )

Proof

Step Hyp Ref Expression
1 grpinvinvd.1
 |-  B = ( Base ` G )
2 grpinvinvd.2
 |-  N = ( invg ` G )
3 grpinvinvd.3
 |-  ( ph -> G e. Grp )
4 grpinvinvd.4
 |-  ( ph -> X e. B )
5 1 2 grpinvinv
 |-  ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X )
6 3 4 5 syl2anc
 |-  ( ph -> ( N ` ( N ` X ) ) = X )