Metamath Proof Explorer


Theorem grpnpncan0

Description: Cancellation law for group subtraction ( npncan2 analog). (Contributed by AV, 24-Nov-2019)

Ref Expression
Hypotheses grpsubadd.b B=BaseG
grpsubadd.p +˙=+G
grpsubadd.m -˙=-G
grpnpncan0.0 0˙=0G
Assertion grpnpncan0 GGrpXBYBX-˙Y+˙Y-˙X=0˙

Proof

Step Hyp Ref Expression
1 grpsubadd.b B=BaseG
2 grpsubadd.p +˙=+G
3 grpsubadd.m -˙=-G
4 grpnpncan0.0 0˙=0G
5 simpl GGrpXBYBGGrp
6 simprl GGrpXBYBXB
7 simprr GGrpXBYBYB
8 1 2 3 grpnpncan GGrpXBYBXBX-˙Y+˙Y-˙X=X-˙X
9 5 6 7 6 8 syl13anc GGrpXBYBX-˙Y+˙Y-˙X=X-˙X
10 1 4 3 grpsubid GGrpXBX-˙X=0˙
11 10 adantrr GGrpXBYBX-˙X=0˙
12 9 11 eqtrd GGrpXBYBX-˙Y+˙Y-˙X=0˙